Suppr超能文献

在氧化还原驱动的轮烷中对运动的机理评估表明,较长的连接物会加速正向逃脱并阻碍反向平移。

Mechanistic evaluation of motion in redox-driven rotaxanes reveals longer linkers hasten forward escapes and hinder backward translations.

机构信息

Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark.

出版信息

J Am Chem Soc. 2014 Apr 30;136(17):6373-84. doi: 10.1021/ja5013596. Epub 2014 Apr 18.

Abstract

Mechanistic understanding of the translational movements in molecular switches is essential for designing machine-like prototypes capable of following set pathways of motion. To this end, we demonstrated that increasing the station-to-station distance will speed up the linear movements forward and slow down the movements backward in a homologous series of bistable rotaxanes. Four redox-active rotaxanes, which drove a cyclobis(paraquat-p-phenylene) (CBPQT(4+)) mobile ring between a tetrathiafulvalene (TTF) station and an oxyphenylene station, were synthesized with only variations to the lengths of the glycol linker connecting the two stations (n = 5, 8, 11, and 23 atoms). We undertook the first mechanistic study of the full cycle of motion in this class of molecular switch using cyclic voltammetry. The kinetics parameters (k, ΔG(‡)) of switching were determined at different temperatures to provide activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)). Longer glycol linkers led to modest increases in the forward escape (t(1/2) = 60 to <7 ms). The rate-limiting step involves movement of the tetracationic CBPQT(4+) ring away from the singly oxidized TTF(+) unit by overcoming one of the thiomethyl (SMe) speed bumps before proceeding on to the secondary oxyphenylene station. Upon reduction, however, the return translational movement of the CBPQT(4+) ring from the oxyphenylene station back to the neutral TTF station was slowed considerably by the longer linkers (t(1/2) = 1.4 to >69 s); though not because of a diffusive walk. The reduced rate of motion backward depended on folded structures that were only present with longer linkers.

摘要

分子开关的平移运动的机理理解对于设计能够遵循设定运动路径的类机器原型至关重要。为此,我们证明了在同系物双稳态轮烷中,增加站到站的距离将加速线性向前运动,并减缓向后运动。四个氧化还原活性轮烷,其将一个环双(对醌-对亚苯基)(CBPQT(4+))可动环驱动在四硫富瓦烯(TTF)站和氧亚苯基站之间,仅通过连接两个站的乙二醇接头的长度变化来合成(n = 5、8、11 和 23 个原子)。我们使用循环伏安法对这类分子开关的整个运动周期进行了首次机理研究。在不同温度下确定了开关的动力学参数(k,ΔG(‡)),以提供活化焓(ΔH(‡))和熵(ΔS(‡))。更长的乙二醇接头导致向前逃逸的适度增加(t(1/2)= 60 至 <7 ms)。限速步骤涉及四阳离子 CBPQT(4+)环从单氧化的 TTF(+)单元移动,通过克服一个硫甲基(SMe)速度障碍,然后再前进到次级氧亚苯基站。然而,在还原时,CBPQT(4+)环从氧亚苯基站返回到中性 TTF 站的回传平移运动由于更长的接头而大大减慢(t(1/2)= 1.4 至 >69 s);尽管不是因为扩散步行。向后运动的速率取决于仅在较长接头存在时才存在的折叠结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验