Suppr超能文献

用于构建视网膜细胞密度地形图的空间分析方法比较

A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density.

作者信息

Garza-Gisholt Eduardo, Hemmi Jan M, Hart Nathan S, Collin Shaun P

机构信息

School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia.

出版信息

PLoS One. 2014 Apr 18;9(4):e93485. doi: 10.1371/journal.pone.0093485. eCollection 2014.

Abstract

Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.

摘要

展示不同神经元亚型在视网膜上密度变化的地形图,是理解不同脊椎动物视网膜特化适应性意义的宝贵工具。迄今为止,此类地图是根据仅经过有限分析(线性插值)的原始计数数据创建的,而且在许多情况下,呈现为等密度等高线图,其中的等高线是通过肉眼平滑处理的。使用体视学方法来计数神经元分布,需要一种更严谨的方法来分析计数数据,并且可能会提供更准确的神经元分布模式表示。此外,对视网膜地形图进行正式的空间分析,可以在种内和种间更有力地比较地形图。在本文中,我们展示了一个用于分析视网膜神经元地形图的新R脚本,并比较了用于构建地形图的计数数据插值和平滑方法。我们比较了四种用于细胞计数数据空间分析的方法:秋间插值法、薄板样条插值法、薄板样条平滑法和高斯核平滑法。使用插值法“尊重”观测数据,只是计算创建等密度等高线图所需的中间值。插值法保留了更多数据,但因此也包含了异常值、采样误差和/或其他实验假象。相比之下,对数据进行平滑处理可以减少由假象引起的“噪声”,并能更清晰地呈现主要的“真实”分布。在细胞密度梯度较浅且局部密度的微小变化可能会显著影响神经元地形图的感知空间模式的情况下,这一点尤其有用。薄板样条法和高斯核法都能生成类似的视网膜地形图,但所使用的平滑参数可能会影响结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ae/3998654/c9ba9ee5a719/pone.0093485.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验