Suppr超能文献

Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking.

作者信息

Torres E A, Montoro F, Righetto R D, Ramirez A J

机构信息

Brazilian Nanotechnology National Laboratory (LNNano), Campinas, SP, Brazil; Now at Faculty of Engineering, Instituto Tecnologico Metropolitano (ITM), Medellin, Antioquia, Colombia.

出版信息

J Microsc. 2014 Jun;254(3):157-65. doi: 10.1111/jmi.12128. Epub 2014 Apr 17.

Abstract

Nowadays, the implementation of sophisticated in situ electron microscopy tests is providing new insights in several areas. In this work, an in situ high-temperature strain test into a scanning electron microscope was developed. This setup was used to study the grain boundary sliding mechanism and its effect on the ductility dip cracking. This methodology was applied to study the mechanical behaviour of Ni-base filler metal alloys ERNiCrFe-7 and ERNiCr-3, which were evaluated between 700°C and 1000°C. The ductility dip cracking susceptibility (threshold strain; εmin) for both alloys was quantified. The εmin of ERNiCrFe-7 and ERNiCr-3 alloys were 7.5% and 16.5%, respectively, confirming a better resistance of ERNiCr-3 to ductility dip cracking. Furthermore, two separate components of grain boundary sliding, pure sliding (Sp) and deformation sliding (Sd), were identified and quantified. A direct and quantitative link between grain boundary tortuosity, grain boundary sliding and ductility dip cracking resistance has been established for the ERNiCrFe-7 and ERNiCr-3 alloys.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验