Suppr超能文献

拟南芥谷氨酰-tRNA 还原酶与其刺激蛋白复合物的晶体结构

Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein.

机构信息

Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

出版信息

Proc Natl Acad Sci U S A. 2014 May 6;111(18):6630-5. doi: 10.1073/pnas.1400166111. Epub 2014 Apr 21.

Abstract

Tetrapyrrole biosynthesis in plants, algae, and most bacteria starts from the NADPH-dependent reduction of glutamyl-tRNA by glutamyl-tRNA reductase (GluTR). The GluTR-catalyzed reaction is the rate-limiting step, and GluTR is the target of multiple posttranslational regulations, such as heme feedback inhibition, for the tetrapyrrole biosynthetic pathway. A recently identified GluTR regulator, GluTR binding protein (GluBP), has been shown to spatially organize tetrapyrrole synthesis by distributing GluTR into different suborganellar locations. Here we report the complex structure of GluTR-GluBP from Arabidopsis thaliana. The dimeric GluBP binds symmetrically to the catalytic domains of the V-shaped GluTR dimer via its C-terminal domain. A substantial conformational change of the GluTR NADPH-binding domain is observed, confirming the postulated rotation of the NADPH-binding domain for hydride transfer from NADPH to the substrate. Arg146, "guarding the door" for metabolic channeling, adopts alternative conformations, which may represent steps involved in substrate recognition and product release. A coupled enzyme assay shows that GluBP stimulates GluTR catalytic efficiency with an approximate threefold increase of the 5-aminolevulinic acid formation rate. In addition, the GluTR activity can be inhibited by heme in a concentration-dependent way regardless of the presence of GluBP. A structural alignment indicates that GluBP belongs to a heme-binding family involved in heme metabolism. We propose a catalytic mechanism model for GluTR, through which photosynthetic organisms can achieve precise regulation of tetrapyrrole biosynthesis.

摘要

植物、藻类和大多数细菌中的四吡咯生物合成始于谷氨酸-tRNA 还原酶 (GluTR) 依赖 NADPH 的谷氨酸-tRNA 的还原。GluTR 催化的反应是限速步骤,GluTR 是多种翻译后调节的靶标,例如血红素反馈抑制,用于四吡咯生物合成途径。最近鉴定的 GluTR 调节剂,GluTR 结合蛋白 (GluBP),已被证明通过将 GluTR 分配到不同的亚细胞器位置来空间组织四吡咯合成。在这里,我们报告了来自拟南芥的 GluTR-GluBP 的复合物结构。二聚体 GluBP 通过其 C 端结构域对称地结合到 V 形 GluTR 二聚体的催化结构域上。观察到 GluTR NADPH 结合结构域的显著构象变化,证实了假定的 NADPH 结合结构域旋转,用于将氢化物从 NADPH 转移到底物。Arg146“守卫代谢通道的大门”,采用替代构象,这可能代表涉及底物识别和产物释放的步骤。偶联酶测定表明,GluBP 以大约三倍的 5-氨基乙酰丙酸形成速率刺激 GluTR 催化效率。此外,GluBP 存在与否,血红素都可以以浓度依赖的方式抑制 GluTR 活性。结构比对表明,GluBP 属于参与血红素代谢的血红素结合家族。我们提出了 GluTR 的催化机制模型,通过该模型,光合生物可以实现四吡咯生物合成的精确调节。

相似文献

1
Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6630-5. doi: 10.1073/pnas.1400166111. Epub 2014 Apr 21.
2
The Non-canonical Tetratricopeptide Repeat (TPR) Domain of Fluorescent (FLU) Mediates Complex Formation with Glutamyl-tRNA Reductase.
J Biol Chem. 2015 Jul 10;290(28):17559-65. doi: 10.1074/jbc.M115.662981. Epub 2015 Jun 2.
3
An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts.
Plant Cell. 2011 Dec;23(12):4476-91. doi: 10.1105/tpc.111.086421. Epub 2011 Dec 16.
6
Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase.
Biochem Biophys Res Commun. 2011 Feb 4;405(1):134-9. doi: 10.1016/j.bbrc.2011.01.013. Epub 2011 Jan 8.
7
Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate.
J Biol Chem. 2002 Dec 13;277(50):48657-63. doi: 10.1074/jbc.M206924200. Epub 2002 Oct 4.
9
Glutamate recognition and hydride transfer by Escherichia coli glutamyl-tRNA reductase.
FEBS J. 2007 Sep;274(17):4609-14. doi: 10.1111/j.1742-4658.2007.05989.x. Epub 2007 Aug 14.
10
Crystal structure of Arabidopsis thaliana glutamyl-tRNA reductase in complex with NADPH and glutamyl-tRNA reductase binding protein.
Photosynth Res. 2018 Sep;137(3):443-452. doi: 10.1007/s11120-018-0518-8. Epub 2018 May 21.

引用本文的文献

3
Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway.
J Integr Plant Biol. 2025 Apr;67(4):887-911. doi: 10.1111/jipb.13837. Epub 2025 Jan 24.
6
Maintenance of heme homeostasis in through post-translational regulation of glutamyl-tRNA reductase.
J Bacteriol. 2023 Sep 26;205(9):e0017123. doi: 10.1128/jb.00171-23. Epub 2023 Sep 1.
9
An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice.
Theor Appl Genet. 2022 Aug;135(8):2817-2831. doi: 10.1007/s00122-022-04151-7. Epub 2022 Jul 2.
10
An anthranilic acid-responsive transcriptional regulator controls the physiology and pathogenicity of Ralstonia solanacearum.
PLoS Pathog. 2022 May 26;18(5):e1010562. doi: 10.1371/journal.ppat.1010562. eCollection 2022 May.

本文引用的文献

1
Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants.
Front Plant Sci. 2013 Sep 20;4:371. doi: 10.3389/fpls.2013.00371.
2
New insights in the topology of the biosynthesis of 5-aminolevulinic acid.
Plant Signal Behav. 2013 Feb;8(2):e23124. doi: 10.4161/psb.23124. Epub 2013 Jan 8.
3
Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria.
J Exp Bot. 2012 Feb;63(4):1675-87. doi: 10.1093/jxb/err437. Epub 2012 Jan 9.
4
An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts.
Plant Cell. 2011 Dec;23(12):4476-91. doi: 10.1105/tpc.111.086421. Epub 2011 Dec 16.
5
The Pfam protein families database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.
6
Crystal structure of HugZ, a novel heme oxygenase from Helicobacter pylori.
J Biol Chem. 2011 Jan 14;286(2):1537-44. doi: 10.1074/jbc.M110.172007. Epub 2010 Oct 28.
8
The cell biology of tetrapyrroles: a life and death struggle.
Trends Plant Sci. 2010 Sep;15(9):488-98. doi: 10.1016/j.tplants.2010.05.012. Epub 2010 Jul 1.
9
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
10
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验