Lüer Corinna, Schauer Stefan, Virus Simone, Schubert Wolf-Dieter, Heinz Dirk W, Moser Jürgen, Jahn Dieter
Institute of Microbiology, Technical University Braunschweig, Germany.
FEBS J. 2007 Sep;274(17):4609-14. doi: 10.1111/j.1742-4658.2007.05989.x. Epub 2007 Aug 14.
The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH-dependent reduction by glutamyl-tRNA reductase (GluTR) of tRNA-bound glutamate to glutamate-1-semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl-tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNA(Glu) mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate-enzyme interaction near the aminoacyl bond to tRNA(Glu), by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNA(Glu) represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a 'back door' exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4-nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure-based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.
大肠杆菌中四吡咯生物合成的第一步涉及谷氨酰 - tRNA还原酶(GluTR)将与tRNA结合的谷氨酸依赖NADPH还原为谷氨酸 - 1 - 半醛。我们使用一系列底物和酶变体在体外评估了谷氨酰 - tRNA的谷氨酸部分对底物特异性的贡献。出乎意料的是,我们发现错配谷氨酰胺的tRNA(Glu)是纯化的重组GluTR的底物。同样出乎意料的是,参与谷氨酸侧链结合的氨基酸残基(S109A、T49V、R52K)或参与稳定精氨酸52 - 谷氨酸相互作用的氨基酸残基(谷氨酸54和组氨酸99)的取代并没有消除酶活性。然而,分别用亮氨酸和赖氨酸取代参与tRNA(Glu)氨酰键附近谷氨酸 - 酶相互作用的谷氨酰胺116和谷氨酸114,确实消除了还原酶活性。因此,我们提出谷氨酸与tRNA(Glu)之间的酯键是GluTR识别底物的关键决定因素,而通过“后门”出口释放产物的必要性允许在氨基酸部分的识别中存在一定程度的结构变异性。使用底物乙酸对硝基苯酯分析在无NADPH时发生的GluTR变体的酯酶活性,证实了半胱氨酸50对硫酯形成的关键作用。最后,观察到GluTR变体Q116L缺乏还原酶活性,而保留了酯酶活性。基于结构的分子建模表明,谷氨酰胺116可能在定位NADPH的烟酰胺基团以允许向底物进行有效的氢化物转移方面至关重要。因此,我们的数据提供了关于大肠杆菌GluTR活性位点残基独特功能的新信息。