Khedkar Vijay M, Joseph Jose, Pissurlenkar Raghuvir, Saran Anil, Coutinho Evans C
a Department of Pharmaceutical Chemistry , Bombay College of Pharmacy , Kalina, Santacruz (E), Mumbai 400098 , India.
J Biomol Struct Dyn. 2015;33(4):749-69. doi: 10.1080/07391102.2014.909744. Epub 2014 Apr 22.
A conceptually new idea in quantitative structure-activity relationships (QSAR) which makes use of ensembles from molecular dynamics (MD) trajectories and information retrieved from enzyme-inhibitor binding thermodynamics is presented in this study. This new methodology, termed ensemble comparative residue interaction analysis (eCoRIA), attempts to overcome the current one chemical-one structure-one parameter value dogma in computational chemistry by modeling the biological activity as a function of molecular descriptors derived from an ensemble of conformers of enzyme-inhibitor complexes. The approach is distinctly different from the standard QSAR methodology which uses a single low-energy conformation or the properties averaged over a set of conformers to correlate with the activity. Each conformational ensemble derived from MD simulations is analyzed for the distribution of the non-bonded interaction energies (steric, electrostatic, and hydrophobic) along with solvation, strain, and entropic energy of the inhibitors with the individual amino acid residues in the receptor and these are correlated to the activity through a QSAR model. The scope of the new method is demonstrated with three diverse enzyme-inhibitor data-sets - glycogen phosphorylase b, human immunodeficiency virus-1 protease and cyclin-dependent kinase 2. The QSAR equations derived from the methodology have revealed all the structure activity relationships previously reported for these classes of molecules as well as uncovered some features that were hitherto unknown and may have a hidden role in driving the ligand-receptor-binding process. Impressive improvements in the predictions of affinity have been achieved compared to other QSAR formalisms namely CoMFA, CoMSIA (receptor-independent QSAR techniques), and CoRIA (a receptor-dependent QSAR technique). eCoRIA could provide an understanding of the thermodynamic properties influencing the ligand-receptor binding over a time scale as sampled by the MD simulation. The advantage of analyzing enzyme-inhibitor interaction energies in a statistical domain is that the noise due to inaccuracies in the potential energy functions can be reduced and mechanistically important interaction terms related to protein-ligand binding specificity can be identified which can assist the medicinal chemists in designing new molecules and biologists in studying the influence of position-specific mutations in the receptor on ligand binding.
本研究提出了定量构效关系(QSAR)中一个概念全新的理念,该理念利用分子动力学(MD)轨迹的系综以及从酶-抑制剂结合热力学中获取的信息。这种新方法被称为系综比较残基相互作用分析(eCoRIA),它试图通过将生物活性建模为源自酶-抑制剂复合物构象体系综的分子描述符的函数,来克服计算化学中当前“一种化学物质-一种结构-一个参数值”的教条。该方法与标准的QSAR方法明显不同,标准QSAR方法使用单个低能构象或一组构象体的平均性质来与活性相关联。对从MD模拟得到的每个构象体系综进行分析,以研究抑制剂与受体中各个氨基酸残基的非键相互作用能(空间、静电和疏水)分布以及溶剂化、应变和熵能,并通过QSAR模型将这些与活性相关联。新方法的适用范围通过三个不同的酶-抑制剂数据集得到了证明——糖原磷酸化酶b、人类免疫缺陷病毒1蛋白酶和细胞周期蛋白依赖性激酶2。从该方法导出的QSAR方程揭示了此前报道的这些类分子的所有构效关系,同时还发现了一些迄今未知的特征,这些特征可能在驱动配体-受体结合过程中发挥着隐藏作用。与其他QSAR形式主义(即比较分子场分析(CoMFA)、比较分子相似性指数分析(CoMSIA,一种与受体无关的QSAR技术)和残基相互作用分析(CoRIA,一种与受体相关的QSAR技术))相比,在亲和力预测方面取得了令人瞩目的改进。eCoRIA能够在MD模拟采样的时间尺度上,提供对影响配体-受体结合的热力学性质的理解。在统计领域分析酶-抑制剂相互作用能的优势在于,可以减少由于势能函数不准确而产生的噪声,并识别与蛋白质-配体结合特异性相关的具有重要机制意义的相互作用项,这有助于药物化学家设计新分子,并帮助生物学家研究受体中位置特异性突变对配体结合的影响。