Suppr超能文献

HIV-1蛋白酶抑制剂的比较结合能分析:纳入溶剂效应并验证其作为基于受体的药物设计中的强大工具

Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design.

作者信息

Pérez C, Pastor M, Ortiz A R, Gago F

机构信息

Departamento de Farmacología, Universidad de Alcalá, Madrid, Spain.

出版信息

J Med Chem. 1998 Mar 12;41(6):836-52. doi: 10.1021/jm970535b.

Abstract

A comparative binding energy (COMBINE) analysis (Ortiz et al. J. Med. Chem. 1995, 38, 2681-2691) has been performed on a training set of 33 HIV-1 protease inhibitors, and the resulting regression models have been validated using an additional external set of 16 inhibitors. This data set was originally reported by Holloway et al. (J. Med. Chem. 1995, 38, 305-317), who showed the usefulness of molecular mechanics interaction energies for predicting the activity of novel HIV-1 protease inhibitors within the framework of the MM2X force field and linear regression techniques. We first used the AMBER force field on the same set of three-dimensional structures to check up on any possible force-field dependencies. In agreement with the previous findings, the calculated raw ligand-receptor interaction energies were highly correlated with the inhibitory activities (r2 = 0.81), and the linear regression model relating both magnitudes had an acceptable predictive ability both in internal validation tests (q2 = 0.79, SDEPcv = 0.61) and when applied to the external set of 16 different inhibitors (SDEPex = 1.08). When the interaction energies were further analyzed using the COMBINE formalism, the resulting PLS model showed improved fitting properties (r2 = 0.89) and provided better estimations for the activity of the compounds in the external data set (SDEPex = 0.83). Computation of the electrostatic part of the ligand-receptor interactions by numerically solving the Poisson-Boltzmann equation did not improve the quality of the linear regression model. On the contrary, incorporation of the solvent-screened residue-based electrostatic interactions and two additional descriptors representing the electrostatic energy contributions to the partial desolvation of both the ligands and the receptor resulted in a COMBINE model that achieved a remarkable predictive ability, as assessed by both internal (q2 = 0.73, SDEPcv = 0.69) and external validation tests (SDEPex = 0.59). Finally, when all the inhibitors studied were merged into a single expanded set, a new model was obtained that explained 91% of the variance in biological activity (r2 = 0.91), with very high predictive ability (q2 = 0.81, SDEPcv = 0.66). In addition, the COMBINE analysis provided valuable information about the relative importance of the contributions to the activity of individual residues that can be fruitfully used to design better inhibitors. All in all, COMBINE analysis is validated as a powerful methodology for predicting binding affinities and pharmacological activities of congeneric ligands that bind to a common receptor.

摘要

已对33种HIV-1蛋白酶抑制剂的训练集进行了比较结合能(COMBINE)分析(奥尔蒂斯等人,《药物化学杂志》,1995年,38卷,2681 - 2691页),并使用另外16种抑制剂的外部数据集对所得回归模型进行了验证。该数据集最初由霍洛韦等人报道(《药物化学杂志》,1995年,38卷,305 - 317页),他们展示了分子力学相互作用能在MM2X力场和线性回归技术框架内预测新型HIV-1蛋白酶抑制剂活性的有用性。我们首先在同一组三维结构上使用AMBER力场,以检查任何可能的力场依赖性。与先前的研究结果一致,计算得到的原始配体 - 受体相互作用能与抑制活性高度相关(r2 = 0.81),并且在内部验证测试(q2 = 0.79,SDEPcv = 0.61)以及应用于16种不同抑制剂的外部数据集时(SDEPex = 1.08),将两者联系起来的线性回归模型都具有可接受的预测能力。当使用COMBINE形式进一步分析相互作用能时,所得的PLS模型显示出更好的拟合特性(r2 = 0.89),并为外部数据集中化合物的活性提供了更好的估计(SDEPex = 0.83)。通过数值求解泊松 - 玻尔兹曼方程计算配体 - 受体相互作用的静电部分并没有提高线性回归模型的质量。相反,纳入基于溶剂筛选的残基静电相互作用以及另外两个表示静电能对配体和受体部分去溶剂化贡献的描述符,得到了一个COMBINE模型,通过内部(q2 = 0.73,SDEPcv = 0.69)和外部验证测试(SDEPex = 0.59)评估,该模型具有显著的预测能力。最后,当将所有研究的抑制剂合并为一个单一的扩展集时,得到了一个新模型,该模型解释了生物活性中91%的方差(r2 = 0.91),具有非常高的预测能力(q2 = 0.81,SDEPcv = 0.66)。此外,COMBINE分析提供了关于各个残基对活性贡献的相对重要性的有价值信息,这些信息可有效地用于设计更好的抑制剂。总而言之,COMBINE分析被验证为一种强大的方法,用于预测与共同受体结合的同类配体的结合亲和力和药理活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验