Suppr超能文献

具有均匀混合的直接传播和媒介传播疾病的有限种群繁殖数的解析计算。

Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.

作者信息

Keegan Lindsay, Dushoff Jonathan

机构信息

Department of Biology, McMaster University, Hamilton, ON, Canada,

出版信息

Bull Math Biol. 2014 May;76(5):1143-54. doi: 10.1007/s11538-014-9950-x. Epub 2014 Apr 23.

Abstract

The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.

摘要

基本再生数R0为评估各种因素如何影响传染病发病率提供了一个基础。最近有人提出,特别是对于媒介传播疾病,R0应进行修正,以考虑单一疾病传播代内有限宿主种群的影响。在此,我们采用传播因子方法,在均匀混合的假设下,针对媒介传播疾病和直接传播疾病计算此类“有限种群再生数”。对于媒介传播疾病,我们假设媒介种群实际上是无限的,估计宿主到宿主和媒介到媒介代的有限种群再生数。我们为所有这三个量找到了简单、可解释的公式。在直接传播的情况下,我们发现有限种群再生数在R0达到种群大小的一半之前就与R0产生偏差。在媒介传播的情况下,我们发现宿主到宿主的再生数在R0更低的值时就产生偏差,而在实际参数范围内,媒介到媒介的再生数偏差很小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00e5/4013491/31c3d3e49483/11538_2014_9950_Fig1_HTML.jpg

相似文献

1
Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.
Bull Math Biol. 2014 May;76(5):1143-54. doi: 10.1007/s11538-014-9950-x. Epub 2014 Apr 23.
2
Estimating finite-population reproductive numbers in heterogeneous populations.
J Theor Biol. 2016 May 21;397:1-12. doi: 10.1016/j.jtbi.2016.01.022. Epub 2016 Feb 15.
3
Robustness of the reproductive number estimates in vector-borne disease systems.
PLoS Negl Trop Dis. 2018 Dec 17;12(12):e0006999. doi: 10.1371/journal.pntd.0006999. eCollection 2018 Dec.
4
Global dynamics of a vector-host epidemic model with age of infection.
Math Biosci Eng. 2017;14(5-6):1159-1186. doi: 10.3934/mbe.2017060.
5
Contact rate calculation for a basic epidemic model.
Math Biosci. 2008 Nov;216(1):56-62. doi: 10.1016/j.mbs.2008.08.007.
6
Transmission parameters of vector-borne infections.
Med Mal Infect. 2011 Nov;41(11):588-93. doi: 10.1016/j.medmal.2011.07.016. Epub 2011 Oct 10.
7
Epidemic thresholds in dynamic contact networks.
J R Soc Interface. 2009 Mar 6;6(32):233-41. doi: 10.1098/rsif.2008.0218.
8
Effect of the epidemiological heterogeneity on the outbreak outcomes.
Math Biosci Eng. 2017 Jun 1;14(3):735-754. doi: 10.3934/mbe.2017041.
9
An age-structured vector-borne disease model with horizontal transmission in the host.
Math Biosci Eng. 2018 Oct 1;15(5):1099-1116. doi: 10.3934/mbe.2018049.
10
Vector-borne diseases models with residence times - A Lagrangian perspective.
Math Biosci. 2016 Nov;281:128-138. doi: 10.1016/j.mbs.2016.09.006. Epub 2016 Sep 10.

引用本文的文献

1
Estimating finite-population reproductive numbers in heterogeneous populations.
J Theor Biol. 2016 May 21;397:1-12. doi: 10.1016/j.jtbi.2016.01.022. Epub 2016 Feb 15.

本文引用的文献

1
Modeling the population-level effects of male circumcision as an HIV-preventive measure: a gendered perspective.
PLoS One. 2011;6(12):e28608. doi: 10.1371/journal.pone.0028608. Epub 2011 Dec 20.
2
Invasion of infectious diseases in finite homogeneous populations.
J Theor Biol. 2011 Nov 21;289:83-9. doi: 10.1016/j.jtbi.2011.08.035. Epub 2011 Sep 3.
3
Revisiting the basic reproductive number for malaria and its implications for malaria control.
PLoS Biol. 2007 Mar;5(3):e42. doi: 10.1371/journal.pbio.0050042.
4
Perspectives on the basic reproductive ratio.
J R Soc Interface. 2005 Sep 22;2(4):281-93. doi: 10.1098/rsif.2005.0042.
6
Individual-based perspectives on R(0).
J Theor Biol. 2000 Mar 7;203(1):51-61. doi: 10.1006/jtbi.1999.1064.
7
Heterogeneities in the transmission of infectious agents: implications for the design of control programs.
Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):338-42. doi: 10.1073/pnas.94.1.338.
8
Differential attractiveness of isolated humans to mosquitoes in Tanzania.
Trans R Soc Trop Med Hyg. 1995 Nov-Dec;89(6):604-6. doi: 10.1016/0035-9203(95)90406-9.
9
The estimation of the basic reproduction number for infectious diseases.
Stat Methods Med Res. 1993;2(1):23-41. doi: 10.1177/096228029300200103.
10
Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others.
Trans R Soc Trop Med Hyg. 1986;80(1):69-77. doi: 10.1016/0035-9203(86)90199-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验