Suppr超能文献

我20年后的论文:呼气末正压对人体右心室功能的影响。

My paper 20 years later: Effect of positive end-expiratory pressure on right ventricular function in humans.

作者信息

Pinsky Michael R

机构信息

Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 606 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA,

出版信息

Intensive Care Med. 2014 Jul;40(7):935-41. doi: 10.1007/s00134-014-3294-8. Epub 2014 Apr 24.

Abstract

INTRODUCTION

In 1992, we published a report on the effect of positive end-expiratory pressure (PEEP) on right ventricular (RV) function in humans.

RESULTS

We measured RV volumes and pressures and pericardial pressure (Ppc) as PEEP was increased from zero to 15 cm H20 in 12 patients after thoracotomy, using a pulmonary arterial catheter equipped with a rapid responding thermistor that allowed measurement of RV ejection fraction (RVef), while Ppc was measured via a pericardial balloon catheter. RV end-diastolic volume (EDV) was estimated as the ratio of stroke volume (SV) to RVef, whereas RV end-systolic volume (ESV) were estimated as RV EDV-SV. PEEP increased Ppc and Pra, but RVef unaltered. There was no relation between either RV filling pressure (Pra-Ppc) and EDV or the change in RV filling pressure and EDV, although EDV varied significantly with PEEP (p < 0.05). The relations between EDV and both SV and RVef were weak (r = 0.54 and 0.55, respectively). RVef varied inversely with ESV (r = -0.77), although it showed no relation to transmural peak pulmonary artery pressure (r = 0.28). However, both absolute and relative changes in EDV corresponded closely with respective ESV values (r = 0.94). We concluded that EDV varies independently of changes in filling pressure and that changes in ESV occur independently of changes in ejection pressure. These data can be explained by assuming that the RV shape changes can dissociate changes in RV EDV from changes in RV wall stress (preload). Thus, changes in RV EDV may or may not alter SV but should proportionately change ESV to a degree dependent on election pressure and contractility.

CONCLUSIONS

Subsequent studies confirmed our findings which can be summarized as 1) RV filling is independent of Pra; thus central venous pressure cannot be used to estimate RV preload; and 2) for cardiac output to increase by the Starling mechanism the RV must dilate increasing RV ESV. Since the pericardium limits absolute biventricular volume, there is a finite limit to which cardiac output can increase by the Starling mechanism defined not by left ventricular contractility but by RV function. And 3) if fluid loading causes Pra to increase without increasing cardiac output, then resuscitation should stop as the patient is going into acute cor pulmonale. These truths help bedside clinicians understand the echocardiographic and hemodynamic signatures of both RV failure and volume responsiveness.

摘要

引言

1992年,我们发表了一篇关于呼气末正压(PEEP)对人体右心室(RV)功能影响的报告。

结果

在12例开胸术后患者中,当PEEP从零增加到15 cm H₂O时,我们使用配备快速响应热敏电阻的肺动脉导管测量右心室容积和压力以及心包压力(Ppc),该热敏电阻可用于测量右心室射血分数(RVef),而Ppc通过心包球囊导管测量。右心室舒张末期容积(EDV)通过每搏量(SV)与RVef的比值估算,而右心室收缩末期容积(ESV)通过RV EDV - SV估算。PEEP使Ppc和中心静脉压(Pra)升高,但RVef未改变。尽管EDV随PEEP有显著变化(p < 0.05),但右心室充盈压(Pra - Ppc)与EDV之间或右心室充盈压变化与EDV之间均无关联。EDV与SV和RVef之间的关系均较弱(r分别为0.54和0.55)。RVef与ESV呈负相关(r = -0.77),尽管它与跨壁肺动脉峰值压力无关联(r = 0.28)。然而,EDV的绝对变化和相对变化均与各自的ESV值密切相关(r = 0.94)。我们得出结论,EDV的变化独立于充盈压的变化,ESV的变化独立于射血压力的变化。这些数据可以通过假设右心室形状变化可使右心室EDV的变化与右心室壁应力(前负荷)的变化相分离来解释。因此,右心室EDV的变化可能会也可能不会改变SV,但应按比例改变ESV,其程度取决于射血压力和收缩力。

结论

后续研究证实了我们的发现,可总结为:1)右心室充盈独立于Pra;因此中心静脉压不能用于估计右心室前负荷;2)为使心输出量通过Starling机制增加,右心室必须扩张,增加右心室ESV。由于心包限制了双心室的绝对容积,心输出量通过Starling机制增加存在有限的限度,该限度不是由左心室收缩力而是由右心室功能决定。3)如果液体负荷导致Pra升高而心输出量未增加,那么当患者进入急性肺心病时应停止复苏。这些事实有助于床边临床医生理解右心室衰竭和容量反应性的超声心动图及血流动力学特征。

相似文献

1
My paper 20 years later: Effect of positive end-expiratory pressure on right ventricular function in humans.
Intensive Care Med. 2014 Jul;40(7):935-41. doi: 10.1007/s00134-014-3294-8. Epub 2014 Apr 24.
2
Effect of positive end-expiratory pressure on right ventricular function in humans.
Am Rev Respir Dis. 1992 Sep;146(3):681-7. doi: 10.1164/ajrccm/146.3.681.
3
Right ventricular function in human sepsis: a thermodilution study.
Chest. 1997 Oct;112(4):1043-9. doi: 10.1378/chest.112.4.1043.
4
Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.
Heart Surg Forum. 2018 Jan 15;21(1):E009-E017. doi: 10.1532/hsf.1864.
5
Feasibility of measuring relative right ventricular volumes and ejection fraction with implantable rhythm control devices.
Pacing Clin Electrophysiol. 1993 Aug;16(8):1673-83. doi: 10.1111/j.1540-8159.1993.tb01038.x.
10
Selective positive end-expiratory pressure and right ventricular function in dogs.
Acta Anaesthesiol Scand. 1994 Feb;38(2):175-9. doi: 10.1111/j.1399-6576.1994.tb03862.x.

引用本文的文献

2
Research progress on the pathogenesis of AKI complicated by ECMO.
Clin Exp Nephrol. 2025 Jan;29(1):10-20. doi: 10.1007/s10157-024-02559-7. Epub 2024 Sep 28.
7
Cardiopulmonary interactions-which monitoring tools to use?
Front Physiol. 2023 Aug 9;14:1234915. doi: 10.3389/fphys.2023.1234915. eCollection 2023.
10
Heart-Protective Mechanical Ventilation in Postoperative Cardiosurgical Patients.
Crit Care Res Pract. 2021 Mar 23;2021:6617809. doi: 10.1155/2021/6617809. eCollection 2021.

本文引用的文献

2
A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe.
Intensive Care Med. 2013 Apr;39(4):629-35. doi: 10.1007/s00134-012-2797-4. Epub 2013 Jan 4.
3
Role of the venous return in critical illness and shock: part II-shock and mechanical ventilation.
Crit Care Med. 2013 Feb;41(2):573-9. doi: 10.1097/CCM.0b013e31827bfc25.
4
Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension.
Circ Heart Fail. 2013 Jan;6(1):136-44. doi: 10.1161/CIRCHEARTFAILURE.111.966127. Epub 2012 Nov 14.
5
Tissue Doppler imaging of right ventricular decompensation in pulmonary hypertension.
Congest Heart Fail. 2009 Nov-Dec;15(6):271-6. doi: 10.1111/j.1751-7133.2009.00113.x.
6
Interactions between respiration and systemic hemodynamics. Part II: practical implications in critical care.
Intensive Care Med. 2009 Feb;35(2):198-205. doi: 10.1007/s00134-008-1298-y. Epub 2008 Sep 30.
8
Pericardial and ventricular pressure.
Circ Res. 1960 Nov;8:1171-81. doi: 10.1161/01.res.8.6.1171.
10
Cyclic changes in right ventricular output impedance during mechanical ventilation.
J Appl Physiol (1985). 1999 Nov;87(5):1644-50. doi: 10.1152/jappl.1999.87.5.1644.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验