Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1862-71. doi: 10.1073/pnas.1323856111. Epub 2014 Apr 23.
How human DNA repair proteins survey the genome for UV-induced photoproducts remains a poorly understood aspect of the initial damage recognition step in nucleotide excision repair (NER). To understand this process, we performed single-molecule experiments, which revealed that the human UV-damaged DNA-binding protein (UV-DDB) performs a 3D search mechanism and displays a remarkable heterogeneity in the kinetics of damage recognition. Our results indicate that UV-DDB examines sites on DNA in discrete steps before forming long-lived, nonmotile UV-DDB dimers (DDB1-DDB2)2 at sites of damage. Analysis of the rates of dissociation for the transient binding molecules on both undamaged and damaged DNA show multiple dwell times over three orders of magnitude: 0.3-0.8, 8.1, and 113-126 s. These intermediate states are believed to represent discrete UV-DDB conformers on the trajectory to stable damage detection. DNA damage promoted the formation of highly stable dimers lasting for at least 15 min. The xeroderma pigmentosum group E (XP-E) causing K244E mutant of DDB2 found in patient XP82TO, supported UV-DDB dimerization but was found to slide on DNA and failed to stably engage lesions. These findings provide molecular insight into the loss of damage discrimination observed in this XP-E patient. This study proposes that UV-DDB recognizes lesions via multiple kinetic intermediates, through a conformational proofreading mechanism.
人类 DNA 修复蛋白如何在基因组中探测到由紫外线引起的光产物,这仍然是核苷酸切除修复(NER)中初始损伤识别步骤的一个理解甚少的方面。为了理解这个过程,我们进行了单分子实验,结果表明人类紫外线损伤 DNA 结合蛋白(UV-DDB)执行一种 3D 搜索机制,并在损伤识别的动力学中显示出显著的异质性。我们的结果表明,UV-DDB 在形成长寿命、非运动性的 UV-DDB 二聚体(DDB1-DDB2)2 于损伤部位之前,以离散的步骤检查 DNA 上的位点。对未损伤和损伤 DNA 上瞬态结合分子的解离速率进行分析表明,存在三个数量级以上的多个停留时间:0.3-0.8、8.1 和 113-126 s。这些中间状态被认为代表了在稳定损伤检测的轨迹上离散的 UV-DDB 构象。DNA 损伤促进了高度稳定的二聚体的形成,其持续时间至少为 15 分钟。在 XP82TO 患者中发现的 XP-E 引起的 DDB2 的 K244E 突变体,支持 UV-DDB 二聚化,但被发现能够在 DNA 上滑动,并且不能稳定地结合损伤。这些发现为该 XP-E 患者中观察到的损伤识别丧失提供了分子上的见解。本研究提出,UV-DDB 通过多个动力学中间产物,通过构象校验机制识别损伤。