Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, Department of Neurology, University Hospital, 79106 Freiburg, Germany, and Department of Neurology, School of Medicine and Center for Neuroscience, University of California, Davis, Sacramento, California 95817.
J Neurosci. 2014 Apr 23;34(17):5765-75. doi: 10.1523/JNEUROSCI.5307-13.2014.
Kainate receptors containing the GluK1 subunit have an impact on excitatory and inhibitory neurotransmission in brain regions, such as the amygdala and hippocampus, which are relevant to seizures and epilepsy. Here we used 2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a potent and selective agonist of kainate receptors that include the GluK1 subunit, in conjunction with mice deficient in GluK1 and GluK2 kainate receptor subunits to assess the role of GluK1 kainate receptors in provoking seizures and in kindling epileptogenesis. We found that systemic ATPA, acting specifically via GluK1 kainate receptors, causes locomotor arrest and forelimb extension (a unique behavioral characteristic of GluK1 activation) and induces myoclonic behavioral seizures and electrographic seizure discharges in the BLA and hippocampus. In contrast, the proconvulsant activity of systemic AMPA, kainate, and pentylenetetrazol is not mediated by GluK1 kainate receptors, and deletion of these receptors does not elevate the threshold for seizures in the 6 Hz model. ATPA also specifically activates epileptiform discharges in BLA slices in vitro via GluK1 kainate receptors. Olfactory bulb kindling developed similarly in wild-type, GluK1, and GluK2 knock-out mice, demonstrating that GluK1 kainate receptors are not required for epileptogenesis or seizure expression in this model. We conclude that selective activation of kainate receptors containing the GluK1 subunit can trigger seizures, but these receptors are not necessary for seizure generation in models commonly used to identify therapeutic agents for the treatment of epilepsy.
含 GluK1 亚基的红藻氨酸受体对大脑区域的兴奋性和抑制性神经传递有影响,这些区域与癫痫发作和癫痫有关。在这里,我们使用 2-氨基-3-(3-羟基-5-叔丁基异恶唑-4-基)丙酸(ATPA),一种包含 GluK1 亚基的红藻氨酸受体的有效且选择性激动剂,结合 GluK1 和 GluK2 红藻氨酸受体亚基缺失的小鼠,评估 GluK1 红藻氨酸受体在引发癫痫发作和点燃癫痫发生中的作用。我们发现,系统给予 ATPA,通过 GluK1 红藻氨酸受体特异性作用,引起运动性抑制和前肢伸展(GluK1 激活的独特行为特征),并在 BLA 和海马中诱导肌阵挛性行为性癫痫发作和脑电图癫痫放电。相比之下,系统 AMPA、红藻氨酸和戊四氮的致惊厥活性不受 GluK1 红藻氨酸受体介导,并且这些受体的缺失不会提高 6 Hz 模型中癫痫发作的阈值。ATPA 还通过 GluK1 红藻氨酸受体特异性激活体外 BLA 切片中的癫痫样放电。在野生型、GluK1 和 GluK2 敲除小鼠中,嗅球点燃的发展相似,表明 GluK1 红藻氨酸受体在该模型中不是癫痫发生或癫痫发作表达所必需的。我们得出结论,选择性激活包含 GluK1 亚基的红藻氨酸受体可以引发癫痫发作,但这些受体对于在常用于鉴定治疗癫痫药物的模型中产生癫痫发作不是必需的。