Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal, Instituto de Biologia Molecular e Celular, Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4150-180 Porto, Portugal, and Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto. 4200-319 Porto, Portugal.
J Neurosci. 2014 Apr 23;34(17):5861-73. doi: 10.1523/JNEUROSCI.0021-14.2014.
Dopamine plays an important role in several forms of synaptic plasticity in the hippocampus, a crucial brain structure for working memory (WM) functioning. In this study, we evaluated whether the working-memory impairment characteristic of animal models of chronic pain is dependent on hippocampal dopaminergic signaling. To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 region of rats and recorded the neuronal activity during a food-reinforced spatial WM task of trajectory alternation. Within-subject behavioral performance and patterns of dorsoventral neuronal activity were assessed before and after the onset of persistent neuropathic pain using the Spared Nerve Injury (SNI) model of neuropathic pain. Our results show that the peripheral nerve lesion caused a disruption in WM and in hippocampus spike activity and that this disruption was reversed by the systemic administration of the dopamine D2/D3 receptor agonist quinpirole (0.05 mg/kg). In SNI animals, the administration of quinpirole restored both the performance-related and the task-related spike activity to the normal range characteristic of naive animals, whereas quinpirole in sham animals caused the opposite effect. Quinpirole also reversed the abnormally low levels of hippocampus dorsoventral connectivity and phase coherence. Together with our finding of changes in gene expression of dopamine receptors and modulators after the onset of the nerve injury model, these results suggest that disruption of the dopaminergic balance in the hippocampus may be crucial for the clinical neurological and cognitive deficits observed in patients with painful syndromes.
多巴胺在海马体的几种形式的突触可塑性中发挥重要作用,海马体是工作记忆 (WM) 功能的关键大脑结构。在这项研究中,我们评估了慢性疼痛动物模型中特征性的工作记忆损伤是否依赖于海马多巴胺能信号。为了解决这个问题,我们在大鼠背侧和腹侧海马 CA1 区植入了多通道电极阵列,并在轨迹交替的食物强化空间 WM 任务期间记录神经元活动。在使用 spared nerve injury (SNI) 神经病理性疼痛模型之前和之后,通过评估动物的行为表现和背腹侧神经元活动模式,评估了慢性神经病理性疼痛发作后动物的行为表现和背腹侧神经元活动模式。我们的结果表明,外周神经损伤导致 WM 和海马体棘波活动中断,而这种中断被系统给予多巴胺 D2/D3 受体激动剂喹吡罗 (0.05 mg/kg) 逆转。在 SNI 动物中,喹吡罗将与行为相关的棘波活动和与任务相关的棘波活动恢复到与未受伤动物正常范围特征一致的水平,而在 sham 动物中,喹吡罗则产生相反的效果。喹吡罗还逆转了海马体背腹侧连接和相位相干性的异常低水平。结合我们在神经损伤模型发作后发现的多巴胺受体和调节剂的基因表达变化,这些结果表明,海马体中多巴胺能平衡的破坏可能是疼痛综合征患者观察到的临床神经和认知缺陷的关键。