IEEE Trans Med Imaging. 2014 Jun;33(6):1313-23. doi: 10.1109/TMI.2014.2309986. Epub 2014 Mar 11.
Recent hardware advances in optical coherence tomography (OCT) have led to ever higher A-scan rates. However, the estimation of blood flow axial velocities is limited by the presence and type of noise. Higher acquisition rates alone do not necessarily enable precise quantification of Doppler velocities, particularly if the estimator is suboptimal. In previous work, we have shown that the Kasai autocorrelation estimator is statistically suboptimal under conditions of additive white Gaussian noise. In addition, for practical OCT measurements of flow, decorrelation noise affects Doppler frequency estimation by broadening the signal spectrum. Here, we derive a general maximum likelihood estimator (MLE) for Doppler frequency estimation that takes into account additive white noise as well as signal decorrelation. We compare the decorrelation MLE with existing techniques using simulated and flow phantom data and find that it has better performance, achieving the Cramer-Rao lower bound. By making an approximation, we also provide an interpretation of this method in the Fourier domain. We anticipate that this estimator will be particularly suited for estimating blood flow in in vivo scenarios.
近年来,光学相干断层扫描(OCT)技术在硬件方面取得了重大进展,A 扫描速率不断提高。然而,血流轴向速度的估计受到噪声的存在和类型的限制。仅仅提高采集速率并不一定能够精确量化多普勒速度,特别是如果估计器不够理想的话。在之前的工作中,我们已经表明,在加性白高斯噪声条件下,Kasai 自相关估计器在统计学上是次优的。此外,对于实际的 OCT 血流测量,去相关噪声会通过扩展信号频谱来影响多普勒频率估计。在这里,我们针对多普勒频率估计推导出了一个通用的最大似然估计器(MLE),它考虑了加性白噪声以及信号去相关。我们使用模拟数据和流动体模数据将去相关 MLE 与现有技术进行了比较,发现它具有更好的性能,达到了克拉美-罗下限。通过进行近似处理,我们还在傅里叶域提供了对该方法的解释。我们预计,该估计器特别适用于估计体内血流情况。