Suppr超能文献

纳秒激光脉冲对螺旋神经节神经元和模型细胞的刺激。

Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

作者信息

Rettenmaier Alexander, Lenarz Thomas, Reuter Günter

机构信息

Dept. of Experimental Otology, ENT-Clinics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.

出版信息

Biomed Opt Express. 2014 Mar 3;5(4):1014-25. doi: 10.1364/BOE.5.001014. eCollection 2014 Apr 1.

Abstract

Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

摘要

内耳的光刺激最近引起了关注,由于其高空间刺激选择性,与电耳蜗植入物相比,它具有更高的频率分辨率。尽管在多个体内实验中显示了这种效应的可行性,但刺激机制仍有待讨论。在这里,我们使用膜片钳技术,在单细胞测量中研究了螺旋神经节神经元和模型细胞对从420纳米到1950纳米的宽波长范围内的纳秒脉冲激光束照射的反应。细胞反应依赖于波长和脉冲能量,但太小以至于无法在所研究的螺旋神经节神经元中引发动作电位。由于所施加的辐射暴露远高于相同激光条件下体内实验报道的阈值,我们得出结论,在纳秒脉冲的刺激模式下,直接神经元刺激不是光耳蜗刺激的主要原因。

相似文献

1
Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.
Biomed Opt Express. 2014 Mar 3;5(4):1014-25. doi: 10.1364/BOE.5.001014. eCollection 2014 Apr 1.
2
Nanosecond laser pulse stimulation of the inner ear-a wavelength study.
Biomed Opt Express. 2012 Dec 1;3(12):3332-45. doi: 10.1364/BOE.3.003332. Epub 2012 Nov 28.
3
Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons.
Lasers Surg Med. 2012 Nov;44(9):736-45. doi: 10.1002/lsm.22078. Epub 2012 Sep 27.
4
Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.
Lasers Med Sci. 2017 Feb;32(2):389-396. doi: 10.1007/s10103-016-2129-y. Epub 2016 Dec 20.
5
Effect of Fiberoptic Collimation Technique on 808 nm Wavelength Laser Stimulation of Cochlear Neurons.
Photomed Laser Surg. 2016 Jun;34(6):252-7. doi: 10.1089/pho.2015.4065. Epub 2016 Mar 15.
6
Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.
Lasers Med Sci. 2017 Feb;32(2):357-362. doi: 10.1007/s10103-016-2123-4. Epub 2016 Dec 16.
7
Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1108-14. doi: 10.1109/TBME.2007.892925.
8
Millisecond infrared laser pulses depolarize and elicit action potentials on dorsal root ganglion neurons.
Biomed Opt Express. 2017 Sep 19;8(10):4568-4578. doi: 10.1364/BOE.8.004568. eCollection 2017 Oct 1.
9
Laser stimulation of single auditory nerve fibers.
Laryngoscope. 2010 Oct;120(10):2071-82. doi: 10.1002/lary.21102.
10
Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.
Anat Rec (Hoboken). 2012 Nov;295(11):1987-99. doi: 10.1002/ar.22583. Epub 2012 Oct 8.

引用本文的文献

1
Infrared inhibition and waveform modulation of action potentials in the crayfish motor axon.
Biomed Opt Express. 2019 Nov 27;10(12):6580-6594. doi: 10.1364/BOE.10.006580. eCollection 2019 Dec 1.
3
Auditory Neural Activity in Congenitally Deaf Mice Induced by Infrared Neural Stimulation.
Sci Rep. 2018 Jan 10;8(1):388. doi: 10.1038/s41598-017-18814-9.
4
Millisecond infrared laser pulses depolarize and elicit action potentials on dorsal root ganglion neurons.
Biomed Opt Express. 2017 Sep 19;8(10):4568-4578. doi: 10.1364/BOE.8.004568. eCollection 2017 Oct 1.
5
Optoacoustic effect is responsible for laser-induced cochlear responses.
Sci Rep. 2016 Jun 15;6:28141. doi: 10.1038/srep28141.
6
Optical Stimulation of Neurons.
Curr Mol Imaging. 2014 Jul;3(2):162-177. doi: 10.2174/2211555203666141117220611.

本文引用的文献

1
Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1565-74. doi: 10.1073/pnas.1220697110. Epub 2013 Mar 11.
2
Nanosecond laser pulse stimulation of the inner ear-a wavelength study.
Biomed Opt Express. 2012 Dec 1;3(12):3332-45. doi: 10.1364/BOE.3.003332. Epub 2012 Nov 28.
3
Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.
Anat Rec (Hoboken). 2012 Nov;295(11):1987-99. doi: 10.1002/ar.22583. Epub 2012 Oct 8.
4
Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons.
Lasers Surg Med. 2012 Nov;44(9):736-45. doi: 10.1002/lsm.22078. Epub 2012 Sep 27.
5
Modeling of light absorption in tissue during infrared neural stimulation.
J Biomed Opt. 2012 Jul;17(7):075002. doi: 10.1117/1.JBO.17.7.075002.
7
Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea.
J Neurosci. 2012 Apr 4;32(14):4773-89. doi: 10.1523/JNEUROSCI.4511-11.2012.
8
TRPV4 channels mediate the infrared laser-evoked response in sensory neurons.
J Neurophysiol. 2012 Jun;107(12):3227-34. doi: 10.1152/jn.00424.2011. Epub 2012 Mar 21.
9
Infrared light excites cells by changing their electrical capacitance.
Nat Commun. 2012 Mar 13;3:736. doi: 10.1038/ncomms1742.
10
Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements.
J Neural Eng. 2011 Oct;8(5):056006. doi: 10.1088/1741-2560/8/5/056006. Epub 2011 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验