Shan Chunhua, Zhou Xiaonong, Zhu Huaiping
Department of Mathematics and Statistics, York University, Toronto, ON , M3J 1P3, Canada.
Bull Math Biol. 2014 May;76(5):1194-217. doi: 10.1007/s11538-014-9961-7. Epub 2014 Apr 24.
We formulate and analyze a system of ordinary differential equations for the transmission of schistosomiasis japonica on the islets in the Yangtze River, China. The impact of growing islets on the spread of schistosomiasis is investigated by the bifurcation analysis. Using the projection technique developed by Hassard, Kazarinoff and Wan, the normal form of the cusp bifurcation of codimension 2 is derived to overcome the technical difficulties in studying the existence, stability, and bifurcation of the multiple endemic equilibria in high-dimensional phase space. We show that the model can also undergo transcritical bifurcations, saddle-node bifurcations, a pitchfork bifurcation, and Hopf bifurcations. The bifurcation diagrams and epidemiological interpretations are given. We conclude that when the islet reaches a critical size, the transmission cycle of the schistosomiasis japonica between wild rats Rattus norvegicus and snails Oncomelania hupensis could be established, which serves as a possible source of schistosomiasis transmission along the Yangtze River.
我们建立并分析了一个关于中国长江流域江心洲日本血吸虫传播的常微分方程组。通过分岔分析研究了不断增长的江心洲对血吸虫病传播的影响。利用哈萨德、卡扎里诺夫和万开发的投影技术,推导了余维2尖点分岔的正规形式,以克服在高维相空间中研究多个地方病平衡点的存在性、稳定性和分岔时的技术困难。我们表明该模型还可以经历跨临界分岔、鞍结分岔、叉形分岔和霍普夫分岔。给出了分岔图和流行病学解释。我们得出结论,当江心洲达到临界大小时,日本血吸虫在野生褐家鼠和钉螺之间的传播循环可能会建立,这可能是长江沿线血吸虫病传播的一个来源。