Suppr超能文献

代谢物结合核酶

Metabolite-binding ribozymes.

作者信息

Ramesh Arati, Winkler Wade C

机构信息

The University of Texas Southwestern Medical Center, Department of Biophysics, 6001 Forest Park Rd, Dallas, USA.

The University of Maryland, Department of Cell Biology and Molecular Genetics, 3112 Biosciences Research Building, College Park, MD, USA.

出版信息

Biochim Biophys Acta. 2014 Oct;1839(10):989-994. doi: 10.1016/j.bbagrm.2014.04.015. Epub 2014 Apr 24.

Abstract

Catalysis in the biological context was largely thought to be a protein-based phenomenon until the discovery of RNA catalysts called ribozymes. These discoveries demonstrated that many RNA molecules exhibit remarkable structural and functional versatility. By virtue of these features, naturally occurring ribozymes have been found to be involved in catalyzing reactions for fundamentally important cellular processes such as translation and RNA processing. Another class of RNAs called riboswitches directly binds ligands to control downstream gene expression. Most riboswitches regulate downstream gene expression by controlling premature transcription termination or by affecting the efficiency of translation initiation. However, one riboswitch class couples ligand-sensing to ribozyme activity. Specifically, the glmS riboswitch is a nucleolytic ribozyme, whose self-cleavage activity is triggered by the binding of GlcN6P. The products of this self-cleavage reaction are then targeted by cellular RNases for rapid degradation, thereby reducing glmS expression under conditions of sufficient GlcN6P. Since the discovery of the glmS ribozyme, other metabolite-binding ribozymes have been identified. Together, these discoveries have expanded the general understanding of noncoding RNAs and provided insights that will assist future development of synthetic riboswitch-ribozymes. A very broad overview of natural and synthetic ribozymes is presented herein with an emphasis on the structure and function of the glmS ribozyme as a paradigm for metabolite-binding ribozymes that control gene expression. This article is part of a Special Issue entitled: Riboswitches.

摘要

在生物环境中,催化作用在很大程度上被认为是一种基于蛋白质的现象,直到发现了名为核酶的RNA催化剂。这些发现表明,许多RNA分子具有显著的结构和功能多样性。凭借这些特性,人们发现天然存在的核酶参与催化细胞基本重要过程(如翻译和RNA加工)的反应。另一类名为核糖开关的RNA直接结合配体以控制下游基因表达。大多数核糖开关通过控制过早的转录终止或影响翻译起始效率来调节下游基因表达。然而,一类核糖开关将配体感应与核酶活性联系起来。具体而言,glmS核糖开关是一种核酸裂解核酶,其自我切割活性由GlcN6P的结合触发。然后,这种自我切割反应的产物被细胞核糖核酸酶靶向快速降解,从而在GlcN6P充足的条件下降低glmS表达。自从发现glmS核酶以来,已鉴定出其他代谢物结合核酶。这些发现共同扩展了对非编码RNA的总体认识,并提供了有助于未来合成核糖开关 - 核酶发展的见解。本文对天然和合成核酶进行了非常广泛的概述,重点介绍了glmS核酶的结构和功能,它是控制基因表达的代谢物结合核酶的范例。本文是名为“核糖开关”的特刊的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验