Suppr超能文献

[轮状病毒反向遗传学系统:用于分析VP4刺突蛋白的开发与应用]

[Reverse genetics system of rotaviruses: development and application for analysis of VP4 spike protein].

作者信息

Komoto Satoshi

机构信息

Department of Virology and Parasitology, Fujita Health University School of Medicine.

出版信息

Uirusu. 2013;63(1):103-12. doi: 10.2222/jsv.63.103.

Abstract

The rotavirus genome is composed of 11 gene segments of double-stranded (ds)RNA. Reverse genetics is the powerful and ideal methodology for the molecular analysis of virus biology, which enables the virus genome to be artificially manipulated. Although reverse genetics systems exist for nearly all major groups of RNA viruses, development of such a system for rotaviruses is more challenging owing in part to the technical complexity of manipulation of their multi-segmented genome. A breakthrough in the field of rotavirus reverse genetics came in 2006, when we established the first reverse genetics system for rotaviruses, which is a partially plasmid-based system that permits replacement of a viral gene segment with the aid of a helper virus. Although this helper virus-driven system is technically limited and gives low levels of recombinant viruses, it allows alteration of the rotavirus genome, thus contributing to our understanding of these medically important viruses. In this review, I describe the development and application of our rotavirus reverse genetics system, and its future perspectives.

摘要

轮状病毒基因组由11个双链(ds)RNA基因片段组成。反向遗传学是病毒生物学分子分析的强大且理想的方法,它能够对病毒基因组进行人工操作。尽管几乎所有主要类别的RNA病毒都存在反向遗传学系统,但轮状病毒此类系统的开发更具挑战性,部分原因在于其多片段基因组操作的技术复杂性。2006年,轮状病毒反向遗传学领域取得了突破,当时我们建立了首个轮状病毒反向遗传学系统,这是一个部分基于质粒的系统,借助辅助病毒可实现病毒基因片段的替换。尽管这个辅助病毒驱动的系统在技术上存在局限性且重组病毒产量较低,但它能够改变轮状病毒基因组,从而有助于我们对这些医学上重要的病毒的理解。在这篇综述中,我描述了我们的轮状病毒反向遗传学系统的开发与应用及其未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验