Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland.
Front Physiol. 2014 Apr 3;5:102. doi: 10.3389/fphys.2014.00102. eCollection 2014.
In the visual system of Drosophila melanogaster the retina photoreceptors form tetrad synapses with the first order interneurons, amacrine cells and glial cells in the first optic neuropil (lamina), in order to transmit photic and visual information to the brain. Using the specific antibodies against synaptic proteins; Bruchpilot (BRP), Synapsin (SYN), and Disc Large (DLG), the synapses in the distal lamina were specifically labeled. Then their abundance was measured as immunofluorescence intensity in flies held in light/dark (LD 12:12), constant darkness (DD), and after locomotor and light stimulation. Moreover, the levels of proteins (SYN and DLG), and mRNAs of the brp, syn, and dlg genes, were measured in the fly's head and brain, respectively. In the head we did not detect SYN and DLG oscillations. We found, however, that in the lamina, DLG oscillates in LD 12:12 and DD but SYN cycles only in DD. The abundance of all synaptic proteins was also changed in the lamina after locomotor and light stimulation. One hour locomotor stimulations at different time points in LD 12:12 affected the pattern of the daily rhythm of synaptic proteins. In turn, light stimulations in DD increased the level of all proteins studied. In the case of SYN, however, this effect was observed only after a short light pulse (15 min). In contrast to proteins studied in the lamina, the mRNA of brp, syn, and dlg genes in the brain was not cycling in LD 12:12 and DD, except the mRNA of dlg in LD 12:12. Our earlier results and obtained in the present study showed that the abundance of BRP, SYN and DLG in the distal lamina, at the tetrad synapses, is regulated by light and a circadian clock while locomotor stimulation affects their daily pattern of expression. The observed changes in the level of synaptic markers reflect the circadian plasticity of tetrad synapses regulated by the circadian clock and external inputs, both specific and unspecific for the visual system.
在果蝇的视觉系统中,视网膜感光细胞与第一级神经节细胞、无长突细胞和神经胶质细胞在第一视神经丛(外节)中形成四联体突触,以便将光和视觉信息传递到大脑。使用针对突触蛋白的特异性抗体——Bruchpilot(BRP)、Synapsin(SYN)和Disc Large(DLG),特异性标记外节中的突触。然后,通过免疫荧光强度测量它们在光照/黑暗(LD 12:12)、持续黑暗(DD)和运动及光照刺激后的丰度。此外,还分别在果蝇头部和大脑中测量了蛋白质(SYN 和 DLG)和 brp、syn 和 dlg 基因的 mRNAs 水平。在头部,我们没有检测到 SYN 和 DLG 的振荡。然而,我们发现,在外节中,DLG 在 LD 12:12 和 DD 中振荡,但 SYN 仅在 DD 中循环。运动和光照刺激后,外节中所有突触蛋白的丰度也发生了变化。在 LD 12:12 的不同时间点进行 1 小时的运动刺激,影响了突触蛋白的日常节律模式。相反,DD 中的光照刺激增加了所有研究蛋白的水平。然而,对于 SYN,只有在短光脉冲(15 分钟)后才观察到这种效果。与在外节中研究的蛋白质不同,大脑中 brp、syn 和 dlg 基因的 mRNA 在 LD 12:12 和 DD 中不循环,除了 LD 12:12 中的 dlg mRNA。我们之前的结果和本研究中的结果表明,在四联体突触的远端外节中,BRP、SYN 和 DLG 的丰度受光和生物钟调节,而运动刺激影响其日常表达模式。观察到的突触标记物水平的变化反映了四联体突触的昼夜可塑性,由生物钟和视觉系统的特定和非特定的外部输入调节。