Matta Chérif F
Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, B3M 2J6; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4J3; Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada, B3H 3C3.
J Comput Chem. 2014 Jun 15;35(16):1165-98. doi: 10.1002/jcc.23608. Epub 2014 Apr 29.
The electron density and the electrostatic potential are fundamentally related to the molecular hamiltonian, and hence are the ultimate source of all properties in the ground- and excited-states. The advantages of using molecular descriptors derived from these fundamental scalar fields, both accessible from theory and from experiment, in the formulation of quantitative structure-to-activity and structure-to-property relationships, collectively abbreviated as QSAR, are discussed. A few such descriptors encode for a wide variety of properties including, for example, electronic transition energies, pK(a)'s, rates of ester hydrolysis, NMR chemical shifts, DNA dimers binding energies, π-stacking energies, toxicological indices, cytotoxicities, hepatotoxicities, carcinogenicities, partial molar volumes, partition coefficients (log P), hydrogen bond donor capacities, enzyme-substrate complementarities, bioisosterism, and regularities in the genetic code. Electronic fingerprinting from the topological analysis of the electron density is shown to be comparable and possibly superior to Hammett constants and can be used in conjunction with traditional bulk and liposolubility descriptors to accurately predict biological activities. A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully. Properties such as "interacting quantum atoms (IQA)" energies which are expressible into an interaction matrix of two body terms (and diagonal one body "self" terms, as IQA energies) can be used in the same manner. The proposed QSAR-type studies based on similarity distances derived from such matrix representatives of molecular structure necessitate extensive investigation before their utility is unequivocally established.
电子密度和静电势从根本上与分子哈密顿量相关,因此是基态和激发态所有性质的最终来源。本文讨论了使用从这些基本标量场导出的分子描述符(理论和实验均可获取)来构建定量构效关系和构性关系(统称为QSAR)的优势。一些这样的描述符编码了各种各样的性质,例如电子跃迁能量、pK(a)值、酯水解速率、NMR化学位移、DNA二聚体结合能、π堆积能、毒理学指标、细胞毒性、肝毒性、致癌性、偏摩尔体积、分配系数(log P)、氢键供体能力、酶 - 底物互补性、生物电子等排体以及遗传密码中的规律。通过电子密度拓扑分析得到的电子指纹图谱显示与哈米特常数相当,甚至可能更优,并且可以与传统的体积和脂溶性描述符结合使用,以准确预测生物活性。从分子中原子的量子理论(QTAIM)的定位和离域指数以及键性质以矩阵形式获得的一类新描述符,被证明能够有意义地量化转移性和分子相似性。诸如“相互作用量子原子(IQA)”能量(可表示为二体项的相互作用矩阵(以及对角的单体“自身”项,如IQA能量))等性质可以以相同的方式使用。基于从这种分子结构矩阵表示导出的相似性距离所提出的QSAR类型研究,在其效用得到明确确立之前需要进行广泛的研究。