State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
Arch Biochem Biophys. 2014 May 15;550-551:67-76. doi: 10.1016/j.abb.2014.04.010. Epub 2014 Apr 26.
Due to the unlimited capacity of self-renew and ability to differentiate into derivatives of three germ layers, human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), have a great potential in regenerative medicine. A major challenge we are facing during the long-term storage of human pluripotent stem cells with the conventional slow cooling rate is the low cell recovery rate after cryopreservation which cannot meet the requirements for the future clinical applications. Evaluating the cell membrane permeability and the corresponding activation energy of hESCs and hiPSCs for water and different cryoprotective agents (CPA), including dimethyl sulfoxide (Me2SO), 1,2-propandiol and glycerol, is important for facilitating the development of cryopreservation protocol to enhance cell recovery after the cryopreservation. The osmotically inactive volume of hESCs and hiPSCs determined using the Boyle-van't Hoff model was 0.32V0 and 0.42V0, respectively. The membrane permeability was assessed from the volume changes of cells exposed to Me2SO, 1,2-propanediol and glycerol at the temperatures ranging from 8 to 30°C. These results showed the biophysical differences between hESCs and hiPSCs. Their activation energy for water and CPAs extrapolated from the Arrhenius relationship indicated that the water transport was probably not through the channel-mediated mechanism.
由于具有无限的自我更新能力和分化为三个胚层衍生物的能力,人类多能干细胞,包括人类胚胎干细胞(hESCs)和人类诱导多能干细胞(hiPSCs),在再生医学中有很大的应用潜力。在使用传统的缓慢冷却速率对人类多能干细胞进行长期储存的过程中,我们面临的一个主要挑战是冷冻保存后细胞的回收率低,无法满足未来临床应用的要求。评估 hESCs 和 hiPSCs 细胞膜对水和不同冷冻保护剂(CPA),包括二甲基亚砜(Me2SO)、1,2-丙二醇和甘油的通透性及其相应的活化能,对于促进冷冻保存方案的发展以提高冷冻保存后细胞的回收率非常重要。使用 Boyle-van't Hoff 模型确定 hESCs 和 hiPSCs 的不可渗透体积分别为 0.32V0 和 0.42V0。通过在 8 至 30°C 的温度下使细胞暴露于 Me2SO、1,2-丙二醇和甘油来评估膜通透性。这些结果显示了 hESCs 和 hiPSCs 之间的生物物理差异。从 Arrhenius 关系外推得出的它们的水和 CPAs 的活化能表明,水的运输可能不是通过通道介导的机制。