Devlin J Paul
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
J Chem Phys. 2014 Apr 28;140(16):164505. doi: 10.1063/1.4871879.
Methanol's property as a catalyst in the formation of gas clathrate hydrates has been recognized for several years and was recently employed in a broad ranging study [K. Shin, K. A. Udachin, I. L. Moudrakovski, D. M. Leek, S. Alavi, C. I. Ratcliffe, and J. A. Ripmeester, Proc. Natl. Acad. Sci. U.S.A. 110, 8437 (2013)]. A new measure of that activity is offered here from comparative rates of formation of methanol (MeOH) clathrate hydrates within our all-vapor aerosol methodology for which tetrahydrofuran (THF) and other small ethers have set a standard for catalytic action. We have previously described numerous examples of the complete conversion of warm all-vapor mixtures to aerosols of gas clathrate hydrates on a sub-second time scale, generally with the catalyst confined primarily to the large cage of either structure-I (s-I) or structure-II (s-II) hydrates. THF has proven to be the most versatile catalyst for the complete subsecond conversion of water to s-II hydrate nanocrystals that follows pulsing of appropriate warm vapor mixtures into a cold chamber held in the 140-220 K range. Here, the comparative ability of MeOH to catalyze the formation of s-I hydrates in the presence of a small-cage help-gas, CO2 or acetylene, is examined. The surprising result is that, in the presence of either help gas, CH-formation rates appear largely unchanged by a complete replacement of THF by MeOH in the vapor mixtures for a chamber temperature of 170 K. However, as that temperature is increased, the dependence of effective catalysis by MeOH on the partial pressure of help gases also increases. Nevertheless, added MeOH is shown to markedly accelerate the s-II THF-CO2 CH formation rate at 220 K.
甲醇作为气体笼形水合物形成过程中的催化剂这一特性已被认识多年,并且最近在一项广泛的研究中得到应用[K. Shin, K. A. Udachin, I. L. Moudrakovski, D. M. Leek, S. Alavi, C. I. Ratcliffe, and J. A. Ripmeester, Proc. Natl. Acad. Sci. U.S.A. 110, 8437 (2013)]。本文通过在我们的全蒸汽气溶胶方法中比较甲醇(MeOH)笼形水合物的形成速率,提供了一种对该活性的新度量方法,在这种方法中,四氢呋喃(THF)和其他小醚类已为催化作用设定了标准。我们之前描述过许多例子,即在亚秒级时间尺度上,温暖的全蒸汽混合物完全转化为气体笼形水合物的气溶胶,通常催化剂主要局限于结构-I(s-I)或结构-II(s-II)水合物的大笼中。事实证明,THF是最通用的催化剂,能使水在将适当的温暖蒸汽混合物脉冲注入保持在140 - 220 K范围内的冷室后,在亚秒级内完全转化为s-II水合物纳米晶体。在此,研究了在存在小笼辅助气体二氧化碳或乙炔的情况下,甲醇催化形成s-I水合物的比较能力。令人惊讶的结果是,在存在任何一种辅助气体的情况下,对于170 K的腔室温度,蒸汽混合物中用甲醇完全替代THF后,甲烷形成速率似乎基本不变。然而,随着温度升高,甲醇有效催化对辅助气体分压的依赖性也增加。尽管如此,添加甲醇在220 K时能显著加速s-II THF - CO₂甲烷的形成速率。