Suppr超能文献

下行直小血管中的合胞体通讯包括肌内皮耦合。

Syncytial communication in descending vasa recta includes myoendothelial coupling.

作者信息

Zhang Zhong, Payne Kristie, Pallone Thomas L

机构信息

Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.

Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland

出版信息

Am J Physiol Renal Physiol. 2014 Jul 1;307(1):F41-52. doi: 10.1152/ajprenal.00178.2014. Epub 2014 Apr 30.

Abstract

Using dual cell patch-clamp recording, we examined pericyte, endothelial, and myoendothelial cell-to-cell communication in descending vasa recta. Graded current injections into pericytes or endothelia yielded input resistances of 220 ± 21 and 128 ± 20 MΩ, respectively (P < 0.05). Injection of positive or negative current into an endothelial cell depolarized and hyperpolarized adjacent endothelial cells, respectively. Similarly, current injection into a pericyte depolarized and hyperpolarized adjacent pericytes. During myoendothelial studies, current injection into a pericyte or an endothelial cell yielded small, variable, but significant change of membrane potential in heterologous cells. Membrane potentials of paired pericytes or paired endothelia were highly correlated and identical. Paired measurements of resting potentials in heterologous cells were also correlated, but with slight hyperpolarization of the endothelium relative to the pericyte, -55.2 ± 1.8 vs. -52.9 ± 2.2 mV (P < 0.05). During dual recordings, angiotensin II or bradykinin stimulated temporally identical variations of pericyte and endothelial membrane potential. Similarly, voltage clamp depolarization of pericytes or endothelial cells induced parallel changes of membrane potential in the heterologous cell type. We conclude that the descending vasa recta endothelial syncytium is of lower resistance than the pericyte syncytium and that high-resistance myoendothelial coupling also exists. The myoendothelial communication between pericytes and endothelium maintains near identity of membrane potentials at rest and during agonist stimulation. Finally, endothelia membrane potential lies slightly below pericyte membrane potential, suggesting a tonic role for the former to hyperpolarize the latter and provide a brake on vasoconstriction.

摘要

我们采用双细胞膜片钳记录技术,研究了直小血管降支中周细胞、内皮细胞和肌内皮细胞之间的细胞间通讯。向周细胞或内皮细胞注入分级电流,测得其输入电阻分别为220±21 MΩ和128±20 MΩ(P<0.05)。向内皮细胞注入正向或负向电流,分别使相邻内皮细胞去极化和超极化。同样,向周细胞注入电流会使相邻周细胞去极化和超极化。在肌内皮细胞研究中,向周细胞或内皮细胞注入电流会使异源性细胞的膜电位发生微小、可变但显著的变化。配对的周细胞或配对的内皮细胞膜电位高度相关且相同。异源性细胞静息电位的配对测量也具有相关性,但内皮细胞相对于周细胞有轻微超极化,分别为-55.2±1.8 mV和-52.9±2.2 mV(P<0.05)。在双记录过程中,血管紧张素II或缓激肽刺激周细胞和内皮细胞膜电位发生时间上相同的变化。同样,对周细胞或内皮细胞进行电压钳去极化会在异源性细胞类型中诱导膜电位的平行变化。我们得出结论,直小血管降支的内皮细胞合体的电阻低于周细胞合体,并且还存在高电阻的肌内皮耦合。周细胞和内皮细胞之间的肌内皮通讯在静息状态和激动剂刺激期间维持膜电位接近相同。最后,内皮细胞膜电位略低于周细胞膜电位,表明前者对后者有超极化的张力作用,并对血管收缩起到制动作用。

相似文献

1
Syncytial communication in descending vasa recta includes myoendothelial coupling.
Am J Physiol Renal Physiol. 2014 Jul 1;307(1):F41-52. doi: 10.1152/ajprenal.00178.2014. Epub 2014 Apr 30.
2
Descending Vasa Recta Endothelial Membrane Potential Response Requires Pericyte Communication.
PLoS One. 2016 May 12;11(5):e0154948. doi: 10.1371/journal.pone.0154948. eCollection 2016.
3
Ca(2+) signaling and membrane potential in descending vasa recta pericytes and endothelia.
Am J Physiol Renal Physiol. 2002 Oct;283(4):F852-60. doi: 10.1152/ajprenal.00065.2002.
4
Descending vasa recta endothelial cells and pericytes form mural syncytia.
Am J Physiol Renal Physiol. 2014 Apr 1;306(7):F751-63. doi: 10.1152/ajprenal.00470.2013. Epub 2013 Dec 31.
5
Control of descending vasa recta pericyte membrane potential by angiotensin II.
Am J Physiol Renal Physiol. 2002 Jun;282(6):F1064-74. doi: 10.1152/ajprenal.00306.2001.
6
Descending vasa recta endothelium is an electrical syncytium.
Am J Physiol Regul Integr Comp Physiol. 2006 Dec;291(6):R1688-99. doi: 10.1152/ajpregu.00261.2006. Epub 2006 Jul 13.
7
Membrane potential controls calcium entry into descending vasa recta pericytes.
Am J Physiol Regul Integr Comp Physiol. 2002 Oct;283(4):R949-57. doi: 10.1152/ajpregu.00251.2002.
8
Descending vasa recta endothelia express inward rectifier potassium channels.
Am J Physiol Renal Physiol. 2007 Oct;293(4):F1248-55. doi: 10.1152/ajprenal.00278.2007. Epub 2007 Aug 1.
9
Adaptive responses of rat descending vasa recta to ischemia.
Am J Physiol Renal Physiol. 2018 Mar 1;314(3):F373-F380. doi: 10.1152/ajprenal.00062.2017. Epub 2017 Aug 16.
10
Inhibition of K+ conductance in descending vasa recta pericytes by ANG II.
Am J Physiol Renal Physiol. 2004 Dec;287(6):F1213-22. doi: 10.1152/ajprenal.00241.2004. Epub 2004 Aug 17.

引用本文的文献

1
Intimal Macrovascular Pericytes: Their Role in Vascular Biology and Atherogenesis.
Curr Med Chem. 2025;32(23):4657-4670. doi: 10.2174/0109298673295675240826070754.
2
Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia.
Neuron. 2018 Jul 25;99(2):362-375.e4. doi: 10.1016/j.neuron.2018.06.012. Epub 2018 Jun 21.
4
Descending Vasa Recta Endothelial Membrane Potential Response Requires Pericyte Communication.
PLoS One. 2016 May 12;11(5):e0154948. doi: 10.1371/journal.pone.0154948. eCollection 2016.

本文引用的文献

1
Renal oxygenation in acute renal ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2014 May 1;306(9):F1026-38. doi: 10.1152/ajprenal.00281.2013. Epub 2014 Mar 5.
2
Descending vasa recta endothelial cells and pericytes form mural syncytia.
Am J Physiol Renal Physiol. 2014 Apr 1;306(7):F751-63. doi: 10.1152/ajprenal.00470.2013. Epub 2013 Dec 31.
3
Renal medullary circulation.
Compr Physiol. 2012 Jan;2(1):97-140. doi: 10.1002/cphy.c100036.
4
Pericytes in kidney fibrosis.
Curr Opin Nephrol Hypertens. 2013 Jul;22(4):471-80. doi: 10.1097/MNH.0b013e328362485e.
5
Mural propagation of descending vasa recta responses to mechanical stimulation.
Am J Physiol Renal Physiol. 2013 Aug 1;305(3):F286-94. doi: 10.1152/ajprenal.00220.2013. Epub 2013 May 22.
6
Renal pericytes: multifunctional cells of the kidneys.
Pflugers Arch. 2013 Jun;465(6):767-73. doi: 10.1007/s00424-013-1263-7. Epub 2013 Apr 16.
7
The evolving role of renal pericytes.
Curr Opin Nephrol Hypertens. 2013 Jan;22(1):10-6. doi: 10.1097/MNH.0b013e32835b4e6e.
8
Endothelial feedback and the myoendothelial projection.
Microcirculation. 2012 Jul;19(5):416-22. doi: 10.1111/j.1549-8719.2012.00187.x.
9
The electrotonic architecture of the retinal microvasculature: diabetes-induced alteration.
Neurochem Int. 2012 Nov;61(6):948-53. doi: 10.1016/j.neuint.2012.02.002. Epub 2012 Feb 13.
10
Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function?
Microcirculation. 2012 Jul;19(5):403-15. doi: 10.1111/j.1549-8719.2011.00146.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验