Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA.
Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA.
CPT Pharmacometrics Syst Pharmacol. 2014 Apr 30;3(4):e112. doi: 10.1038/psp.2014.9.
Optimizing anticancer therapeutics needs to account for variable drug responses in heterogeneous cell populations within the tumor as well as in organs of toxicity. To address cell heterogeneity, we propose a multiscale modeling approach-from in vitro to preclinical and clinical studies-to develop cell-type-specific pharmacokinetic-pharmacodynamic (PK-PD) models. A physiologically based mechanistic modeling approach integrating data from aqueous solutions, U87 glioma cells, mice, and cancer patients was utilized to characterize the brain disposition of temozolomide (TMZ), the cornerstone of chemotherapy against glioblastoma multiforme. The final model represented intracellular normal brain and brain tumor compartments in which TMZ pH-dependent conversion to the DNA-alkylating species leads to the formation of DNA adducts that serve as an entry point for a PD model. This multiscale protocol can be extended to account for TMZ PK-PD in different cell populations, thus providing a critical tool to personalize TMZ-based chemotherapy on a cell-type-specific basis.
优化抗癌疗法需要考虑肿瘤内异质细胞群体以及毒性器官中药物反应的可变性。为了解决细胞异质性问题,我们提出了一种多尺度建模方法——从体外到临床前和临床研究——来开发细胞类型特异性的药代动力学-药效学(PK-PD)模型。一种基于生理学的机制建模方法整合了来自水溶液、U87 神经胶质瘤细胞、小鼠和癌症患者的数据,用于描述替莫唑胺(TMZ)在大脑中的分布情况,TMZ 是胶质母细胞瘤多形性化疗的基石。最终模型代表了细胞内正常脑组织和脑肿瘤组织,其中 TMZ 依赖 pH 的转化为 DNA 烷化剂,导致 DNA 加合物的形成,这是 PD 模型的一个切入点。这种多尺度方案可以扩展到不同细胞群体的 TMZ PK-PD,从而提供了一个关键工具,可基于细胞类型特异性来个性化 TMZ 为基础的化疗。