Suppr超能文献

在中年或老年开始间歇性禁食的生长激素缺乏的慢衰老小鼠中维持血糖稳态。

Preservation of blood glucose homeostasis in slow-senescing somatotrophism-deficient mice subjected to intermittent fasting begun at middle or old age.

作者信息

Arum Oge, Saleh Jamal K, Boparai Ravneet K, Kopchick John J, Khardori Romesh K, Bartke Andrzej

机构信息

Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA,

出版信息

Age (Dordr). 2014 Jun;36(3):9651. doi: 10.1007/s11357-014-9651-2. Epub 2014 May 1.

Abstract

Poor blood glucose homeostatic regulation is common, consequential, and costly for older and elderly populations, resulting in pleiotrophically adverse clinical outcomes. Somatotrophic signaling deficiency and dietary restriction have each been shown to delay the rate of senescence, resulting in salubrious phenotypes such as increased survivorship. Using two growth hormone (GH) signaling-related, slow-aging mouse mutants we tested, via longitudinal analyses, whether genetic perturbations that increase survivorship also improve blood glucose homeostatic regulation in senescing mammals. Furthermore, we institute a dietary restriction paradigm that also decelerates aging, an intermittent fasting (IF) feeding schedule, as either a short-term or a sustained intervention beginning at either middle or old age, and assess its effects on blood glucose control. We find that either of the two genetic alterations in GH signaling ameliorates fasting hyperglycemia; additionally, both longevity-inducing somatotrophic mutations improve insulin sensitivity into old age. Strikingly, we observe major and broad improvements in blood glucose homeostatic control by IF: IF improves ad libitum-fed hyperglycemia, glucose tolerance, and insulin sensitivity, and reduces hepatic gluconeogenesis, in aging mutant and normal mice. These results on correction of aging-resultant blood glucose dysregulation have potentially important clinical and public health implications for our ever-graying global population, and are consistent with the Longevity Dividend concept.

摘要

血糖稳态调节不佳在老年人群中很常见,后果严重且代价高昂,会导致多种不良临床结果。生长激素信号缺陷和饮食限制均已被证明可延缓衰老速度,从而产生诸如提高存活率等有益的表型。我们使用两种与生长激素(GH)信号相关的、衰老缓慢的小鼠突变体,通过纵向分析来测试,增加存活率的基因扰动是否也能改善衰老哺乳动物的血糖稳态调节。此外,我们采用一种同样能延缓衰老的饮食限制模式,即间歇性禁食(IF)喂养方案,作为从中年期或老年期开始的短期或长期干预措施,并评估其对血糖控制的影响。我们发现,GH信号通路中的两种基因改变中的任何一种都能改善空腹高血糖;此外,两种延长寿命的生长激素突变在老年时均能提高胰岛素敏感性。引人注目的是,我们观察到间歇性禁食(IF)能使血糖稳态控制得到重大且广泛的改善:IF可改善随意进食时的高血糖、糖耐量和胰岛素敏感性,并降低衰老突变小鼠和正常小鼠的肝糖异生。这些关于纠正衰老导致的血糖失调的结果,对日益老龄化的全球人口具有潜在的重要临床和公共卫生意义,并且与长寿红利概念相一致。

相似文献

2
Growth hormone abolishes beneficial effects of calorie restriction in long-lived Ames dwarf mice.
Exp Gerontol. 2014 Oct;58:219-229. doi: 10.1016/j.exger.2014.08.010. Epub 2014 Aug 21.
3
6
Reduced caloric intake and periodic fasting independently contribute to metabolic effects of caloric restriction.
Aging Cell. 2020 Apr;19(4):e13138. doi: 10.1111/acel.13138. Epub 2020 Mar 11.
7
Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.
J Gerontol A Biol Sci Med Sci. 2014 Jan;69(1):25-33. doi: 10.1093/gerona/glt080. Epub 2013 Jul 5.
9
Effects of brief perturbations in energy balance on indices of glucose homeostasis in healthy lean men.
Int J Obes (Lond). 2012 Aug;36(8):1094-101. doi: 10.1038/ijo.2011.211. Epub 2011 Nov 8.
10
Divergent regulation of adipose tissue metabolism by calorie restriction and inhibition of growth hormone signaling.
Exp Gerontol. 2009 Oct;44(10):646-52. doi: 10.1016/j.exger.2009.07.002. Epub 2009 Jul 29.

引用本文的文献

1
Dietary Restriction against Parkinson's Disease: What We Know So Far.
Nutrients. 2022 Oct 3;14(19):4108. doi: 10.3390/nu14194108.
2
Effect of Intermittent Fasting on Glucose Homeostasis and Bone Remodeling in Glucocorticoid-Induced Osteoporosis Rat Model.
J Bone Metab. 2021 Nov;28(4):307-316. doi: 10.11005/jbm.2021.28.4.307. Epub 2021 Nov 30.
3
The role and its mechanism of intermittent fasting in tumors: friend or foe?
Cancer Biol Med. 2021 Feb 15;18(1):63-73. doi: 10.20892/j.issn.2095-3941.2020.0250.
4
Can Blood-Circulating Factors Unveil and Delay Your Biological Aging?
Biomedicines. 2020 Dec 15;8(12):615. doi: 10.3390/biomedicines8120615.
6
Growth Hormone Deficiency: Health and Longevity.
Endocr Rev. 2019 Apr 1;40(2):575-601. doi: 10.1210/er.2018-00216.
7
Impact of intermittent fasting on health and disease processes.
Ageing Res Rev. 2017 Oct;39:46-58. doi: 10.1016/j.arr.2016.10.005. Epub 2016 Oct 31.
9
Healthspan and longevity can be extended by suppression of growth hormone signaling.
Mamm Genome. 2016 Aug;27(7-8):289-99. doi: 10.1007/s00335-016-9621-3. Epub 2016 Feb 24.
10
Female PAPP-A knockout mice are resistant to metabolic dysfunction induced by high-fat/high-sucrose feeding at middle age.
Age (Dordr). 2015 Jun;37(3):9765. doi: 10.1007/s11357-015-9765-1. Epub 2015 May 8.

本文引用的文献

3
The diet restriction paradigm: a brief review of the effects of every-other-day feeding.
Age (Dordr). 2005 Mar;27(1):17-25. doi: 10.1007/s11357-005-3286-2. Epub 2005 May 2.
4
Strategies to improve diet in older adults.
Proc Nutr Soc. 2013 Feb;72(1):166-72. doi: 10.1017/S0029665112002819. Epub 2012 Nov 9.
5
Diabetes mellitus in an aging population: the challenge ahead.
J Gerontol A Biol Sci Med Sci. 2012 Dec;67(12):1297-9. doi: 10.1093/gerona/gls201. Epub 2012 Oct 22.
6
Prevalence and determinants of hyperglycaemia in pneumonia patients.
Scand J Infect Dis. 2013 Feb;45(2):88-94. doi: 10.3109/00365548.2012.713117. Epub 2012 Sep 19.
7
How important is glycemic control during coronary artery bypass?
Adv Surg. 2012;46:219-35. doi: 10.1016/j.yasu.2012.03.007.
8
Pancreatic function, type 2 diabetes, and metabolism in aging.
Int J Endocrinol. 2012;2012:320482. doi: 10.1155/2012/320482. Epub 2012 May 17.
9
The critical role of metabolic pathways in aging.
Diabetes. 2012 Jun;61(6):1315-22. doi: 10.2337/db11-1300.
10
Octreotide long-acting repeatable for acromegaly.
Expert Rev Clin Pharmacol. 2012 Mar;5(2):125-43. doi: 10.1586/ecp.12.4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验