Yeh G C, Bonhaus D W, Nadler J V, McNamara J O
Department of Pharmacology, Duke University Medical Center, Durham, NC.
Proc Natl Acad Sci U S A. 1989 Oct;86(20):8157-60. doi: 10.1073/pnas.86.20.8157.
Kindling is an animal model of epilepsy and neuronal plasticity produced by periodic electrical stimulation of the brain. Electrophysiologic studies indicate that this phenomenon is associated with increased participation of N-methyl-D-aspartate (NMDA) receptors in excitatory synaptic transmission. Biochemical studies suggest that a change intrinsic to the NMDA receptor-channel complex may contribute to the increase in NMDA receptor-mediated synaptic transmission. We tested this idea by measuring the binding of 3-[(+)-2-(carboxypiperazin-4-yl)][1,2-3H]propyl-1-phosphonic acid ([3H]CPP), [3H]glycine, and tritiated N-[(1-thienyl)cyclohexyl]piperidine [( 3H]TCP) to rat hippocampal membranes. In this preparation these ligands are selective for the NMDA receptor, the strychnine-insensitive glycine receptor, and the NMDA receptor-gated ion channel, respectively. Kindling increased the density of CPP, glycine, and TCP binding sites in hippocampal membranes by 47%, 42%, and 25%, respectively. No significant changes were detected in the affinity of these binding sites. Surprisingly, alterations in the glycine binding site were detected in animals sacrificed 1 month but not 1 day after the final kindling stimulation. Thus, delayed upregulation of the NMDA receptor-channel complex may be one molecular mechanism that maintains the long-lasting hyperexcitability of hippocampal neurons in kindled animals.
点燃效应是一种癫痫和神经元可塑性的动物模型,由对大脑的周期性电刺激产生。电生理学研究表明,这种现象与N-甲基-D-天冬氨酸(NMDA)受体在兴奋性突触传递中的参与增加有关。生化研究表明,NMDA受体-通道复合物内在的变化可能导致NMDA受体介导的突触传递增加。我们通过测量3-[(+)-2-(羧基哌嗪-4-基)][1,2-3H]丙基-1-膦酸([3H]CPP)、[3H]甘氨酸和氚化N-[(1-噻吩基)环己基]哌啶([3H]TCP)与大鼠海马膜的结合来验证这一想法。在这种制备方法中,这些配体分别对NMDA受体、士的宁不敏感的甘氨酸受体和NMDA受体门控离子通道具有选择性。点燃效应分别使海马膜中CPP、甘氨酸和TCP结合位点的密度增加了47%、42%和25%。这些结合位点的亲和力未检测到显著变化。令人惊讶的是,在最后一次点燃刺激后1个月处死的动物中检测到甘氨酸结合位点的改变,但在1天后处死的动物中未检测到。因此,NMDA受体-通道复合物的延迟上调可能是维持点燃动物海马神经元长期过度兴奋的一种分子机制。