Bhabha Atomic Research Centre, IDA Block B, 4th Cross Road, Visakhapatnam, Andhra Pradesh 530012, India.
J Mol Graph Model. 2014 May;50:134-41. doi: 10.1016/j.jmgm.2014.04.004. Epub 2014 Apr 16.
Molecular dynamics (MD) simulations are used in the study of void nucleation and growth in crystals that are subjected to tensile deformation. These simulations are run for typically several hundred thousand time steps depending on the problem. We output the atom positions at a required frequency for post processing to determine the void nucleation, growth and coalescence due to tensile deformation. The simulation volume is broken up into voxels of size equal to the unit cell size of crystal. In this paper, we present the algorithm to identify the empty unit cells (voids), their connections (void size) and dynamic changes (growth and coalescence of voids) for MD simulations of large atomic systems (multi-million atoms). We discuss the parallel algorithms that were implemented and discuss their relative applicability in terms of their speedup and scalability. We also present the results on scalability of our algorithm when it is incorporated into MD software LAMMPS.
分子动力学(MD)模拟被用于研究在拉伸变形下的晶体中的空洞成核和生长。这些模拟通常需要运行数十万次时间步长,具体取决于问题。我们以所需的频率输出原子位置,以便进行后处理,以确定由于拉伸变形引起的空洞成核、生长和聚结。模拟体积被分割成大小等于晶体的单位晶胞大小的体素。在本文中,我们提出了一种算法,用于识别 MD 模拟中大型原子系统(数百万个原子)中空的单位晶胞(空洞)、它们的连接(空洞大小)和动态变化(空洞的生长和聚结)。我们讨论了实现的并行算法,并根据它们的加速比和可扩展性讨论了它们的相对适用性。我们还介绍了将我们的算法合并到 MD 软件 LAMMPS 中时的可扩展性结果。