Suppr超能文献

从头药物设计中多参数优化方法的进展。

Advances in multiparameter optimization methods for de novo drug design.

机构信息

Optibrium Ltd , 7221 Cambridge Research Park, Beach Drive, Cambridge, CB25 9TL , UK +44 1223 815902 ; +44 1223 815907 ;

出版信息

Expert Opin Drug Discov. 2014 Jul;9(7):803-17. doi: 10.1517/17460441.2014.913565. Epub 2014 May 3.

Abstract

INTRODUCTION

A high-quality drug must achieve a balance of physicochemical and absorption, distribution, metabolism and elimination properties, safety and potency against its therapeutic target(s). Multiparameter optimization (MPO) methods guide the simultaneous optimization of multiple factors to quickly target compounds with the highest chance of downstream success. MPO can be combined with 'de novo design' methods to automatically generate and assess a large number of diverse structures and identify strategies to optimize a compound's overall balance of properties.

AREAS COVERED

The article provides a review of MPO methods and recent developments in the methods and opinions in the field. It also provides a description of advances in de novo design that improve the relevance of automatically generated compound structures and integrate MPO. Finally, the article provides discussion of a recent case study of the automatic design of ligands to polypharmacological profiles.

EXPERT OPINION

Recent developments have reduced the generation of chemically infeasible structures and improved the quality of compounds generated by de novo design methods. There are concerns about the ability of simple drug-like properties and ligand efficiency indices to effectively guide the detailed optimization of compounds. De novo design methods cannot identify a perfect compound for synthesis, but it can identify high-quality ideas for detailed consideration by an expert scientist.

摘要

简介

高质量的药物必须在理化性质、吸收、分布、代谢和消除特性、安全性以及对治疗靶点的效力之间达到平衡。多参数优化(MPO)方法指导多个因素的同时优化,以便快速靶向具有下游成功可能性最高的化合物。MPO 可以与“从头设计”方法相结合,自动生成和评估大量不同的结构,并确定优化化合物整体性质平衡的策略。

涵盖领域

本文综述了 MPO 方法以及该领域方法和观点的最新进展。它还描述了从头设计方面的进展,这些进展提高了自动生成的化合物结构的相关性,并整合了 MPO。最后,本文讨论了最近一个关于多药效轮廓配体自动设计的案例研究。

专家意见

最近的发展减少了化学不可行结构的产生,并提高了从头设计方法生成的化合物的质量。人们担心简单的类药性和配体效率指数是否能够有效地指导化合物的详细优化。从头设计方法无法为合成识别出完美的化合物,但它可以为详细考虑提供高质量的想法,由专家科学家进行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验