Suppr超能文献

DeepCOMO:利用化合物优化监测方法从结构-活性关系诊断到生成分子设计。

DeepCOMO: from structure-activity relationship diagnostics to generative molecular design using the compound optimization monitor methodology.

机构信息

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, 53115, Bonn, Germany.

出版信息

J Comput Aided Mol Des. 2020 Dec;34(12):1207-1218. doi: 10.1007/s10822-020-00349-3. Epub 2020 Oct 5.

Abstract

The compound optimization monitor (COMO) approach was originally developed as a diagnostic approach to aid in evaluating development stages of analog series and progress made during lead optimization. COMO uses virtual analog populations for the assessment of chemical saturation of analog series and has been further developed to bridge between optimization diagnostics and compound design. Herein, we discuss key methodological features of COMO in its scientific context and present a deep learning extension of COMO for generative molecular design, leading to the introduction of DeepCOMO. Applications on exemplary analog series are reported to illustrate the entire DeepCOMO repertoire, ranging from chemical saturation and structure-activity relationship progression diagnostics to the evaluation of different analog design strategies and prioritization of virtual candidates for optimization efforts, taking into account the development stage of individual analog series.

摘要

复合优化监测(COMO)方法最初是作为一种诊断方法开发的,用于辅助评估类似物系列的发展阶段和先导化合物优化过程中的进展。COMO 使用虚拟类似物群体来评估类似物系列的化学饱和程度,并进一步发展为优化诊断和化合物设计之间的桥梁。本文讨论了 COMO 在科学背景下的关键方法学特征,并介绍了 COMO 的深度学习扩展,用于生成分子设计,从而引入了 DeepCOMO。报告了示例性类似物系列的应用,以说明整个 DeepCOMO 系列的应用,范围从化学饱和和构效关系进展诊断到不同类似物设计策略的评估和虚拟候选物的优先级排序,考虑到各个类似物系列的发展阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d92/7595974/d043dc09795d/10822_2020_349_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验