Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, 53115, Bonn, Germany.
J Comput Aided Mol Des. 2020 Dec;34(12):1207-1218. doi: 10.1007/s10822-020-00349-3. Epub 2020 Oct 5.
The compound optimization monitor (COMO) approach was originally developed as a diagnostic approach to aid in evaluating development stages of analog series and progress made during lead optimization. COMO uses virtual analog populations for the assessment of chemical saturation of analog series and has been further developed to bridge between optimization diagnostics and compound design. Herein, we discuss key methodological features of COMO in its scientific context and present a deep learning extension of COMO for generative molecular design, leading to the introduction of DeepCOMO. Applications on exemplary analog series are reported to illustrate the entire DeepCOMO repertoire, ranging from chemical saturation and structure-activity relationship progression diagnostics to the evaluation of different analog design strategies and prioritization of virtual candidates for optimization efforts, taking into account the development stage of individual analog series.
复合优化监测(COMO)方法最初是作为一种诊断方法开发的,用于辅助评估类似物系列的发展阶段和先导化合物优化过程中的进展。COMO 使用虚拟类似物群体来评估类似物系列的化学饱和程度,并进一步发展为优化诊断和化合物设计之间的桥梁。本文讨论了 COMO 在科学背景下的关键方法学特征,并介绍了 COMO 的深度学习扩展,用于生成分子设计,从而引入了 DeepCOMO。报告了示例性类似物系列的应用,以说明整个 DeepCOMO 系列的应用,范围从化学饱和和构效关系进展诊断到不同类似物设计策略的评估和虚拟候选物的优先级排序,考虑到各个类似物系列的发展阶段。