Suppr超能文献

长寿命电荷分离及其在人工光合作用中的应用。

Long-lived charge separation and applications in artificial photosynthesis.

机构信息

Department of Material and Life Science, Graduate School of Engineering, Osaka University and ALCA, Japan Science and Technology Agency , Suita, Osaka 565-0871, Japan.

出版信息

Acc Chem Res. 2014 May 20;47(5):1455-64. doi: 10.1021/ar400200u. Epub 2014 May 5.

Abstract

Researchers have long been interested in replicating the reactivity that occurs in photosynthetic organisms. To mimic the long-lived charge separations characteristic of the reaction center in photosynthesis, researchers have applied the Marcus theory to design synthetic multistep electron-transfer (ET) systems. In this Account, we describe our recent research on the rational design of ET control systems, based on models of the photosynthetic reaction center that rely on the Marcus theory of ET. The key to obtaining a long-lived charge separation is the careful choice of electron donors and acceptors that have small reorganization energies of ET. In these cases, the driving force of back ET is located in the Marcus inverted region, where the lifetime of the charge-separated state lengthens as the driving force of back ET increases. We chose porphyrins as electron donors and fullerenes as electron acceptors, both of which have small ET reorganization energies. By linking electron donor porphyrins and electron acceptor fullerenes at appropriate distances, we achieved charge-separated states with long lifetimes. We could further lengthen the lifetimes of charge-separated states by mixing a variety of components, such as a terminal electron donor, an electron mediator, and an electron acceptor, mimicking both the photosynthetic reaction center and the multistep photoinduced ET that occurs there. However, each step in multistep ET loses a fraction of the initial excitation energy during the long-distance charge separation. To overcome this drawback in multistep ET systems, we used designed new systems where we could finely control the redox potentials and the geometry of simple donor-acceptor dyads. These modifications resulted in a small ET reorganization energy and a high-lying triplet excited state. Our most successful example, 9-mesityl-10-methylacridinium ion (Acr(+)-Mes), can undergo a fast photoinduced ET from the mesityl (Mes) moiety to the singlet excited state of the acridinium ion moiety (Acr(+)) with extremely slow back ET. The high-energy triplet charge-separated state is located deep in the Marcus inverted region, and we have detected the structural changes during the photoinduced ET in this system using X-ray crystallography. To increase the efficiency of both the light-harvesting and photoinduced ET, we assembled the Acr(+)-Mes dyads on gold nanoparticles to bring them in closer proximity to one another. We can also incorporate Acr(+)-Mes molecules within nanosized mesoporous silica-alumina. In contrast to the densely assembled dyads on gold nanoparticles, each Acr(+)-Mes molecule in silica-alumina is isolated in the mesopore, which inhibits the bimolecular back ET and leads to longer lifetimes in solution at room temperature than the natural photosynthetic reaction center. Acr(+)-Mes and related compounds act as excellent organic photocatalysts and facilitate a variety of reactions such as oxygenation, bromination, carbon-carbon bond formation, and hydrogen evolution reactions.

摘要

研究人员一直热衷于复制光合作用中发生的反应性。为了模拟光合作用反应中心特有的长寿命电荷分离,研究人员应用马库斯理论来设计合成多步电子转移 (ET) 系统。在本报告中,我们描述了我们最近基于依赖马库斯 ET 理论的光合作用反应中心模型的 ET 控制系统的合理设计研究。获得长寿命电荷分离的关键是仔细选择具有小 ET 重组能的电子给体和受体。在这些情况下,反向 ET 的驱动力位于马库斯反演区域,其中反向 ET 的驱动力增加会使电荷分离态的寿命延长。我们选择卟啉作为电子给体,富勒烯作为电子受体,它们的 ET 重组能都很小。通过将电子给体卟啉和电子受体富勒烯以适当的距离连接,我们实现了具有长寿命的电荷分离态。通过混合各种组分,例如末端电子给体、电子介体和电子受体,可以进一步延长电荷分离态的寿命,模拟光合作用反应中心和那里发生的多步光诱导 ET。然而,多步 ET 中的每一步在长距离电荷分离过程中都会损失初始激发能的一部分。为了克服多步 ET 系统中的这一缺点,我们使用设计的新系统,在这些系统中我们可以精细控制简单给体-受体二聚体的氧化还原电位和几何形状。这些修饰导致 ET 重组能小和高能三重态激发态。我们最成功的例子是 9-均三甲苯基-10-甲基吖啶鎓离子 (Acr(+)-Mes),它可以从均三甲苯基 (Mes) 部分快速光诱导 ET 到吖啶鎓离子部分的单重态激发态 (Acr(+)),反向 ET 极慢。高能三重态电荷分离态位于马库斯反演区域的深处,我们已经使用 X 射线晶体学检测到该系统中光诱导 ET 过程中的结构变化。为了提高光捕获和光诱导 ET 的效率,我们将 Acr(+)-Mes 二聚体组装在金纳米粒子上,使它们彼此更接近。我们还可以将 Acr(+)-Mes 分子纳入纳米尺寸的介孔硅-氧化铝中。与金纳米粒子上密集组装的二聚体相比,介孔硅-氧化铝中的每个 Acr(+)-Mes 分子都孤立在介孔中,这抑制了双分子反向 ET,并导致在室温下溶液中的寿命比天然光合作用反应中心长。Acr(+)-Mes 和相关化合物是出色的有机光催化剂,可促进多种反应,例如氧化、溴化、碳-碳键形成和氢析出反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验