Pereira Lorena Maria Borges, de Oliveira Diego França, Tiburcio Marco Antonio, Ribeiro Gabriel H, Moraes Carlos André Ferreira, Neto Flávio Olimpio Sanches, Camargo Ademir João, De Boni Leonardo, Nascimento Otaciro Rangel, Homem Manoel G P, Carlos Rose Maria
Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos-SP, Brazil.
Instituto de Física de São Carlos, Universidade Estadual de São Paulo, CP 369, CEP 13560-970 São Carlos-SP, Brazil.
Inorg Chem. 2025 May 5;64(17):8544-8553. doi: 10.1021/acs.inorgchem.4c05443. Epub 2025 Apr 21.
This study explores the dynamics of charge separation (CS) and recombination in the photoinduced electron transfer of the [Ru(phen)(pNDIp)] dyad, focusing on the thermal equilibrium between rapid charge separation (CS) and the slower charge-separated state (CSS). The pNDIp component is a naphthalene diimide linked to one of the phen ligands, providing nearly unrestricted orthogonal freedom between the {[Ru(phen)]} and {pNDIp} units. The investigation employs steady-state and time-resolved spectroscopic techniques, electrochemical methods, and DFT/TD-DFT computational calculations. The results show that selective excitation of the {[Ru(phen)]} at 450 nm partially quenches the MLCT emission due to thermal equilibrium with the CSS state, {Ru(phen)(pNDIp)} ⇌ {Ru(phen)(pNDIp)}. This equilibrium is attributed to a combination of nonradiative forward (τ = 10 ps) and reverse (τ = 140 ps) time decays, driven by the intramolecular charge transfer. The long-lived MLCT state, the reduced distance between the donor and acceptor, and the vibrational structure of the dyad provide sufficient time for CS⇌CSS equilibrium. These findings support Marcus theory and highlight key parameters such as -Δ = 0.279 eV, λ = 0.49 eV, and H = 0.28 eV. Additionally, the dyad's ability to generate singlet oxygen under 450 nm light suggests potential applications in photodynamic therapy and oxidative processes. Its ability to form radical anion RupNDIp upon 350 nm light exposure further demonstrates its versatility in photocatalytic applications.
本研究探讨了[Ru(phen)(pNDIp)]二元体系光诱导电子转移中电荷分离(CS)和复合的动力学,重点关注快速电荷分离(CS)与较慢的电荷分离态(CSS)之间的热平衡。pNDIp组分是与其中一个phen配体相连的萘二亚胺,在{[Ru(phen)]}和{pNDIp}单元之间提供了几乎不受限制的正交自由度。该研究采用了稳态和时间分辨光谱技术、电化学方法以及DFT/TD-DFT计算。结果表明,在450 nm处对{[Ru(phen)]}进行选择性激发,由于与CSS态{Ru(phen)(pNDIp)}⇌{Ru(phen)(pNDIp)}的热平衡,部分淬灭了MLCT发射。这种平衡归因于分子内电荷转移驱动的非辐射正向(τ = 10 ps)和反向(τ = 140 ps)时间衰减的组合。二元体系的长寿命MLCT态、供体和受体之间减小的距离以及振动结构为CS⇌CSS平衡提供了足够的时间。这些发现支持了马库斯理论,并突出了诸如-Δ = 0.279 eV、λ = 0.49 eV和H = 0.28 eV等关键参数。此外,该二元体系在450 nm光下产生单线态氧的能力表明其在光动力疗法和氧化过程中的潜在应用。其在350 nm光照射下形成自由基阴离子RupNDIp的能力进一步证明了其在光催化应用中的多功能性。