Suppr超能文献

铜绿假单胞菌 PAO1 中 C5-二羧酸同化的遗传分析。

Genetic analysis of the assimilation of C5-dicarboxylic acids in Pseudomonas aeruginosa PAO1.

机构信息

Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.

Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada.

出版信息

J Bacteriol. 2014 Jul;196(14):2543-51. doi: 10.1128/JB.01615-14. Epub 2014 May 2.

Abstract

There is a wealth of information on the genetic regulation and biochemical properties of bacterial C4-dicarboxylate transport systems. In sharp contrast, there are far fewer studies describing the transport and assimilation of C5-dicarboxylates among bacteria. In an effort to better our understanding on this subject, we identified the structural and regulatory genes necessary for the utilization of α-ketoglutarate (α-KG) in Pseudomonas aeruginosa PAO1. The PA5530 gene, encoding a putative dicarboxylate transporter, was found to be essential for the growth of P. aeruginosa PAO1 on both α-KG and glutarate (another C5-dicarboxylate). Metabolite analysis confirmed that the PA5530 gene was necessary for the uptake of extracellular α-KG. Like other substrate-inducible transporter genes, expression of the PA5530 gene was induced by extracellular C5-dicarboxylates. It was later found that the expression of the PA5530 gene was driven solely by a -24/-12 promoter recognized by the alternative sigma factor RpoN. Surprisingly, the enhancer binding protein MifR, which is known to have an essential role in biofilm development, was required for the expression of the PA5530 gene. The MifR protein is homologous to other transcriptional regulators involved in dicarboxylate assimilation, suggesting that MifR might interact with RpoN to activate the expression of the PA5530 gene in response to extracellular C5-dicarboxylates, especially α-KG. The results of this study provide a framework for exploring the assimilation of α-KG in other pseudomonads.

摘要

关于细菌 C4-二羧酸运输系统的遗传调控和生化特性,已经有大量的信息。相比之下,描述细菌中 C5-二羧酸的运输和同化的研究要少得多。为了更好地了解这一主题,我们确定了铜绿假单胞菌 PAO1 利用α-酮戊二酸(α-KG)所需的结构和调节基因。编码假定二羧酸转运蛋白的 PA5530 基因被发现对铜绿假单胞菌 PAO1 在α-KG 和戊二酸(另一种 C5-二羧酸)上的生长是必需的。代谢物分析证实,PA5530 基因是细胞外α-KG 摄取所必需的。与其他底物诱导型转运蛋白基因一样,PA5530 基因的表达受细胞外 C5-二羧酸诱导。后来发现,PA5530 基因的表达仅由一种被替代 sigma 因子 RpoN 识别的 -24/-12 启动子驱动。令人惊讶的是,已知在生物膜发育中起关键作用的增强子结合蛋白 MifR,是 PA5530 基因表达所必需的。MifR 蛋白与参与二羧酸同化的其他转录调节因子同源,这表明 MifR 可能与 RpoN 相互作用,以响应细胞外 C5-二羧酸,特别是α-KG,激活 PA5530 基因的表达。这项研究的结果为探索其他假单胞菌中α-KG 的同化提供了一个框架。

相似文献

1
Genetic analysis of the assimilation of C5-dicarboxylic acids in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2014 Jul;196(14):2543-51. doi: 10.1128/JB.01615-14. Epub 2014 May 2.
2
Pseudomonas aeruginosa MifS-MifR Two-Component System Is Specific for α-Ketoglutarate Utilization.
PLoS One. 2015 Jun 26;10(6):e0129629. doi: 10.1371/journal.pone.0129629. eCollection 2015.
3
MifS, a DctB family histidine kinase, is a specific regulator of α-ketoglutarate response in PAO1.
Microbiology (Reading). 2020 Sep;166(9):867-879. doi: 10.1099/mic.0.000943.
6
Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa.
Microbiology (Reading). 2018 Feb;164(2):205-216. doi: 10.1099/mic.0.000594. Epub 2018 Jan 2.
7
Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2011 Sep;193(17):4307-16. doi: 10.1128/JB.05074-11. Epub 2011 Jul 1.

引用本文的文献

2
Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis.
Adv Exp Med Biol. 2022;1386:371-395. doi: 10.1007/978-3-031-08491-1_14.
5
The Regulatory Functions of σ Factor in Phytopathogenic Bacteria.
Int J Mol Sci. 2021 Nov 24;22(23):12692. doi: 10.3390/ijms222312692.
7
Microbial Musings - September 2020.
Microbiology (Reading). 2020 Sep;166(9):794-796. doi: 10.1099/mic.0.000978.
8
Advances in bio-based production of dicarboxylic acids longer than C4.
Eng Life Sci. 2018 Jul 24;18(9):668-681. doi: 10.1002/elsc.201800023. eCollection 2018 Sep.
9
MifS, a DctB family histidine kinase, is a specific regulator of α-ketoglutarate response in PAO1.
Microbiology (Reading). 2020 Sep;166(9):867-879. doi: 10.1099/mic.0.000943.
10
Multidrug Adaptive Resistance of Pseudomonas aeruginosa Swarming Cells.
Antimicrob Agents Chemother. 2020 Feb 21;64(3). doi: 10.1128/AAC.01999-19.

本文引用的文献

1
Functional characterization of SdcF from Bacillus licheniformis, a homolog of the SLC13 Na⁺/dicarboxylate transporters.
J Membr Biol. 2013 Sep;246(9):705-15. doi: 10.1007/s00232-013-9590-3. Epub 2013 Aug 25.
2
3
Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2013 May;195(9):2087-100. doi: 10.1128/JB.02205-12. Epub 2013 Mar 1.
4
Uptake of α-ketoglutarate by citrate transporter CitP drives transamination in Lactococcus lactis.
Appl Environ Microbiol. 2013 Feb;79(4):1095-101. doi: 10.1128/AEM.02254-12. Epub 2012 Nov 30.
5
7
Overcoming fluctuation and leakage problems in the quantification of intracellular 2-oxoglutarate levels in Escherichia coli.
Appl Environ Microbiol. 2011 Oct;77(19):6763-71. doi: 10.1128/AEM.05257-11. Epub 2011 Aug 5.
8
Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2011 Sep;193(17):4307-16. doi: 10.1128/JB.05074-11. Epub 2011 Jul 1.
9
Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes.
Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600. doi: 10.1093/nar/gkq869. Epub 2010 Oct 6.
10
Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress.
FEMS Microbiol Lett. 2010 Aug 1;309(2):170-7. doi: 10.1111/j.1574-6968.2010.02034.x. Epub 2010 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验