Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States.
J Am Chem Soc. 2014 May 14;136(19):7140-51. doi: 10.1021/ja5026744. Epub 2014 May 5.
Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly active and stable catalysts. However, the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium-nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.
在纳米尺度上将钯 (Pd) 与其他过渡金属合金化已成为制备低成本、高活性和稳定催化剂的重要途径。然而,对于合金相状态、化学组成和纳米尺度合金的原子结构如何影响其催化活性,人们缺乏了解,这阻碍了对 Pd 纳米合金催化剂的合理设计。本工作通过一种新方法研究了具有明确双金属组成的钯-镍 (PdNi) 纳米合金对一氧化碳 (CO) 的催化氧化,该方法解决了这一挑战,揭示了在 Pd:Ni 比约为 50:50 时具有显著的最大催化活性。理解结构-催化协同作用的关键是使用高能同步加速器 X 射线衍射结合原子配分函数 (HE-XRD/PDF) 分析来探测受控热化学处理和 CO 反应条件下 PdNi 纳米合金的原子结构。通过反向蒙特卡罗模拟 (RMC) 生成纳米合金颗粒的原子结构的三维 (3D) 模型,由实验 HE-XRD/PDF 数据指导。从各自的 3D 模型中提取 PdNi 纳米合金的结构细节,并将其与测量的催化性能进行比较。比较揭示了 PdNi 纳米合金的相状态、化学组成和原子尺度结构与其 CO 氧化催化活性之间的强烈相关性。通过分析纳米合金颗粒内部和表面的第一近邻原子距离和配位数,进一步证实了这种相关性。这些发现通过控制相状态、组成和原子结构为纳米合金催化剂的结构协同作用提供了新的见解,补充了传统密度泛函理论研究的结果。