Suppr超能文献

一种用于诊断肺腺癌患者脑膜癌病的 NMR 代谢组学方法。

An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung adenocarcinoma cancer patients.

机构信息

College of Pharmacy, Natural Product Research Institute, Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, 151-742, Seoul, Republic of Korea.

出版信息

Int J Cancer. 2015 Jan 1;136(1):162-71. doi: 10.1002/ijc.28949. Epub 2014 May 20.

Abstract

Leptomeningeal carcinomatosis (LC) is a metastatic cancer invading the central nervous system (CNS). We previously reported a metabolomic diagnostic approach as tested on an animal model and compared with current modalities. Here, we provide a proof of concept by applying it to human LC originating from lung cancer, the most common cause of CNS metastasis. Cerebrospinal fluid from LC (n = 26) and normal groups (n = 41) were obtained, and the diagnosis was established with clinical signs, cytology, MRI and biochemical tests. The cytology on the CSF, the current gold standard, exhibited 69% sensitivity (~100% specificity) from the first round of CSF tapping. In comparison, the nuclear magnetic resonance spectra on the CSF showed a clear difference in the metabolic profile between the LC and normal groups. Multivariate analysis and cross-validation yielded the diagnostic sensitivity of 92%, the specificity of 96% and the area under the curve (AUC) of 0.991. Further spectral and statistical analysis identified myo-inositol (p < 5 × 10(-14)), creatine (p < 7 × 10(-8)), lactate (p < 9 × 10(-4)), alanine (p < 7.9 × 10(-3)) and citrate (p < 3 × 10(-4)) as the most contributory metabolites, whose combination exhibited an receiver-operating characteristic diagnostic AUC of 0.996. In addition, the metabolic profile could be correlated with the grading of radiological leptomeningeal enhancement (R(2) = 0.3881 and p = 6.66 × 10(-4)), suggesting its potential utility in grading LC. Overall, we propose that the metabolomic approach might augment current diagnostic modalities for LC, the accurate diagnosis of which remains a challenge.

摘要

脑脊膜癌转移(LC)是一种转移性癌症,侵犯中枢神经系统(CNS)。我们之前报道了一种代谢组学诊断方法,该方法在动物模型上进行了测试,并与当前的方法进行了比较。在这里,我们通过将其应用于源自肺癌的人类 LC 提供了一个概念验证,肺癌是 CNS 转移的最常见原因。从 LC(n=26)和正常组(n=41)获得脑脊液,通过临床症状、细胞学、MRI 和生化检查建立诊断。CSF 细胞学是目前的金标准,在第一轮 CSF 抽吸时表现出 69%的敏感性(~100%特异性)。相比之下,CSF 的核磁共振谱显示 LC 和正常组之间的代谢谱有明显差异。多变量分析和交叉验证得出诊断的敏感性为 92%,特异性为 96%,曲线下面积(AUC)为 0.991。进一步的光谱和统计分析确定了肌醇(p<5×10(-14))、肌酸(p<7×10(-8))、乳酸(p<9×10(-4))、丙氨酸(p<7.9×10(-3))和柠檬酸(p<3×10(-4)))是最有贡献的代谢物,它们的组合表现出 0.996 的接收者操作特征诊断 AUC。此外,代谢谱可以与放射性脑脊膜增强的分级相关(R(2)=0.3881,p=6.66×10(-4)),表明其在 LC 分级中的潜在应用。总的来说,我们提出代谢组学方法可能会增强 LC 的当前诊断方法,但其准确诊断仍然是一个挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验