Suppr超能文献

累加损伤模型:一种用于细胞对药物组合反应的数学模型。

The additive damage model: a mathematical model for cellular responses to drug combinations.

作者信息

Jones Leslie Braziel, Secomb Timothy W, Dewhirst Mark W, El-Kareh Ardith W

机构信息

Department of Mathematics, University of Arizona, Tucson, AZ, USA.

Department of Physiology, University of Arizona, Tucson, AZ, USA.

出版信息

J Theor Biol. 2014 Sep 21;357:10-20. doi: 10.1016/j.jtbi.2014.04.032. Epub 2014 May 4.

Abstract

Mathematical models to describe dose-dependent cellular responses to drug combinations are an essential component of computational simulations for predicting therapeutic responses. Here, a new model, the additive damage model, is introduced and tested in cases where varying concentrations of two drugs are applied with a fixed exposure schedule. In the model, cell survival is determined by whether cellular damage, which depends on the concentrations of the drugs, exceeds a lethal threshold, which varies randomly in the cell population with a prescribed statistical distribution. Cellular damage is assumed to be additive, and is expressed as a sum of separate terms for each drug. Each term has a saturable dependence on drug concentration. The model has appropriate behavior over the entire range of drug concentrations, and is predictive, given single-agent dose-response data for each drug. The proposed model is compared with several other models, by testing their ability to fit 24 data sets for platinum-taxane combinations and 21 data sets for various other combinations. The Akaike Information Criterion is used to assess goodness of fit, taking into account the number of unknown parameters in each model. Overall, the additive damage model provides a better fit to the data sets than any previous model. The proposed model provides a basis for computational simulations of therapeutic responses. It predicts responses to drug combinations based on data for each drug acting as a single agent, and can be used as an improved null reference model for assessing synergy in the action of drug combinations.

摘要

描述细胞对药物组合剂量依赖性反应的数学模型是预测治疗反应的计算模拟的重要组成部分。在此,引入了一种新模型——累加损伤模型,并在以固定暴露方案应用两种药物不同浓度的情况下进行了测试。在该模型中,细胞存活取决于细胞损伤是否超过致死阈值,细胞损伤取决于药物浓度,而致死阈值在细胞群体中以规定的统计分布随机变化。假定细胞损伤是累加性的,并表示为每种药物单独项的总和。每个项对药物浓度具有饱和依赖性。该模型在整个药物浓度范围内具有适当的行为,并且在给出每种药物的单药剂量反应数据时具有预测性。通过测试它们拟合24个铂类-紫杉烷组合数据集和21个其他各种组合数据集的能力,将所提出的模型与其他几个模型进行了比较。使用赤池信息准则来评估拟合优度,同时考虑每个模型中未知参数数量。总体而言,累加损伤模型比以往任何模型都能更好地拟合数据集。所提出的模型为治疗反应的计算模拟提供了基础。它基于每种药物作为单一药物的数据预测对药物组合的反应,并且可以用作评估药物组合作用中协同作用的改进零参考模型。

相似文献

1
The additive damage model: a mathematical model for cellular responses to drug combinations.
J Theor Biol. 2014 Sep 21;357:10-20. doi: 10.1016/j.jtbi.2014.04.032. Epub 2014 May 4.
2
Additive Damage Models for Cellular Pharmacodynamics of Radiation-Chemotherapy Combinations.
Bull Math Biol. 2018 May;80(5):1236-1258. doi: 10.1007/s11538-017-0316-z. Epub 2017 Aug 28.
3
Two-mechanism peak concentration model for cellular pharmacodynamics of Doxorubicin.
Neoplasia. 2005 Jul;7(7):705-13. doi: 10.1593/neo.05118.
4
Cell cycle checkpoint models for cellular pharmacology of paclitaxel and platinum drugs.
AAPS J. 2008;10(1):15-34. doi: 10.1208/s12248-007-9003-6. Epub 2008 Feb 5.
6
Two-drug antimicrobial chemotherapy: a mathematical model and experiments with Mycobacterium marinum.
PLoS Pathog. 2012 Jan;8(1):e1002487. doi: 10.1371/journal.ppat.1002487. Epub 2012 Jan 12.
7
Differential interactions engendered by benzodiazepine and neuroactive steroid combinations on schedule-controlled responding in rats.
Pharmacol Biochem Behav. 2015 Oct;137:53-9. doi: 10.1016/j.pbb.2015.08.003. Epub 2015 Aug 6.
8
A generalized response surface model with varying relative potency for assessing drug interaction.
Biometrics. 2006 Dec;62(4):986-95. doi: 10.1111/j.1541-0420.2006.00579.x.
9
A mathematical model for cisplatin cellular pharmacodynamics.
Neoplasia. 2003 Mar-Apr;5(2):161-9. doi: 10.1016/s1476-5586(03)80008-8.
10
Advances in computational approaches in identifying synergistic drug combinations.
Brief Bioinform. 2018 Nov 27;19(6):1172-1182. doi: 10.1093/bib/bbx047.

引用本文的文献

2
Leveraging Mathematical Modeling to Quantify Pharmacokinetic and Pharmacodynamic Pathways: Equivalent Dose Metric.
Front Physiol. 2019 May 22;10:616. doi: 10.3389/fphys.2019.00616. eCollection 2019.
3
Tissue transport affects how treatment scheduling increases the efficacy of chemotherapeutic drugs.
J Theor Biol. 2018 Feb 7;438:21-33. doi: 10.1016/j.jtbi.2017.10.022. Epub 2017 Oct 21.
4
Advances in Synergistic Combinations of Chinese Herbal Medicine for the Treatment of Cancer.
Curr Cancer Drug Targets. 2016;16(4):346-56. doi: 10.2174/1568009616666151207105851.

本文引用的文献

1
Drug combination studies and their synergy quantification using the Chou-Talalay method.
Cancer Res. 2010 Jan 15;70(2):440-6. doi: 10.1158/0008-5472.CAN-09-1947. Epub 2010 Jan 12.
2
D-optimal designs for parameter estimation for indirect pharmacodynamic response models.
J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):523-39. doi: 10.1007/s10928-009-9135-7. Epub 2009 Nov 11.
4
Synergistic antitumor effects of fleroxacin with 5-fluorouracil in vitro and in vivo for bladder cancer cell lines.
Urology. 2009 Dec;74(6):1370-6. doi: 10.1016/j.urology.2009.03.006. Epub 2009 May 9.
6
The Hill equation: a review of its capabilities in pharmacological modelling.
Fundam Clin Pharmacol. 2008 Dec;22(6):633-48. doi: 10.1111/j.1472-8206.2008.00633.x.
7
Preclinical versus clinical drug combination studies.
Leuk Lymphoma. 2008 Nov;49(11):2059-80. doi: 10.1080/10428190802353591.
8
Cell cycle checkpoint models for cellular pharmacology of paclitaxel and platinum drugs.
AAPS J. 2008;10(1):15-34. doi: 10.1208/s12248-007-9003-6. Epub 2008 Feb 5.
9
Paclitaxel and cisplatin as intravesical agents against non-muscle-invasive bladder cancer.
BJU Int. 2008 Jun;101(11):1347-55. doi: 10.1111/j.1464-410X.2008.07571.x. Epub 2008 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验