Department of Mathematics and Statistics, Canisius College, 2001 Main Street, Buffalo, NY 14208-1098, USA.
J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):523-39. doi: 10.1007/s10928-009-9135-7. Epub 2009 Nov 11.
This report generates efficient experimental designs (dose, sampling times) for parameter estimation for four basic physiologic indirect pharmacodynamic response (IDR) models. The principles underlying IDR models and their response patterns have been well described. Each IDR model explicitly contains four parameters, k (in) (production), k (out) (loss), I (max)/S (max) (capacity) and IC (50)/SC (50) (sensitivity). The pharmacokinetics of an IV dose of drug described by a monoexponential function of time with two parameters, V and k (el), is assumed. The random errors in the response variable are assumed to be additive, independent, and normal with zero mean and variance proportional to some power of the mean response. Optimal design theory was used extensively to assess the role of both dose and sampling times. Our designs were generated in Mathematica (ADAPT 5 typically produces identical results). G-optimality was used to verify that the generated designs were indeed D-optimal. Such designs are efficient and robust when good prior knowledge of the estimated parameters is available. The efficiency of unconstrained D-optimal designs (4 dose, sampling time pairs) does not improve much when the drug doses are allowed to differ, compared with constrained single dose designs (4 sampling times) with one maximal feasible dose. Also, explored were efficiencies of alternative study designs and results from parameter misspecification. This analysis substantiates the importance of larger doses yielding greater certainty in parameter estimation in pharmacodynamics.
本报告生成了用于估计四个基本生理间接药效反应 (IDR) 模型参数的高效实验设计(剂量、采样时间)。IDR 模型及其反应模式的基本原理已经得到了很好的描述。每个 IDR 模型都明确包含四个参数,k(in)(产生)、k(out)(损失)、I(max)/S(max)(容量)和 IC(50)/SC(50)(敏感性)。假设药物的 IV 剂量的药代动力学由两个参数表示,即 V 和 k(el),可以用时间的单指数函数描述。假设响应变量的随机误差是加性的、独立的、正态的,均值为零,方差与均值响应的某个幂次成正比。广泛使用最优设计理论来评估剂量和采样时间的作用。我们的设计是在 Mathematica 中生成的(ADAPT 5 通常会产生相同的结果)。G 最优性用于验证生成的设计确实是 D 最优的。当对估计参数有良好的先验知识时,这种设计是高效和稳健的。与具有一个最大可行剂量的约束单剂量设计(4 个采样时间)相比,允许药物剂量不同的无约束 D 最优设计(4 个剂量、采样时间对)的效率并没有提高很多。此外,还探讨了替代研究设计的效率和参数指定不当的结果。这种分析证实了在药效学中使用更大剂量可以更确定地估计参数的重要性。