Suppr超能文献

在基因翻译计算模型中对周期性起始和转换速率的同步化。

Entrainment to periodic initiation and transition rates in a computational model for gene translation.

作者信息

Margaliot Michael, Sontag Eduardo D, Tuller Tamir

机构信息

School of Electrical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.

Dept. of Mathematics and Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America.

出版信息

PLoS One. 2014 May 6;9(5):e96039. doi: 10.1371/journal.pone.0096039. eCollection 2014.

Abstract

Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period T. We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period T. To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic systems to obtain a desired, periodic, protein synthesis rate.

摘要

周期性振荡在许多生物医学系统中发挥着重要作用。对周期性信号做出响应的生物系统的正常运作需要与周期性刺激同步的能力。例如,睡眠/觉醒周期是内部计时系统与太阳日同步的一种表现。在系统理论的术语中,生物系统必须与周期性刺激同步或锁相。同步在合成生物学中也很重要。例如,连接几个与共同时钟同步的人工生物系统可能会导致一个功能良好的模块化系统。细胞周期是一个调节DNA合成和细胞分裂的周期性程序。最近的生物学研究表明,与细胞周期相关的基因在基因翻译水平上与这个周期性程序同步,导致这些基因的蛋白质水平周期性变化。核糖体流模型(RFM)是通过对统计物理学中的随机模型进行平均场近似得到的确定性模型,已被用于对包括核糖体沿mRNA流动在内的众多过程进行建模。在这里,我们在起始和/或转换速率以共同周期T周期性变化的假设下分析RFM。我们表明,RFM中的核糖体分布轮廓与这种周期性刺激同步。特别是,蛋白质合成模式收敛到一个周期为T的唯一周期解。据我们所知,这是在一个翻译数学模型中首次证明同步,该模型涵盖了起始和终止速率、核糖体运动和相互作用以及沿mRNA的非均匀延伸速度等方面。我们的结果支持这样的推测,即tRNA水平和与翻译过程相关的其他因素的周期性振荡可以诱导蛋白质水平的周期性振荡,并可能提出一种重新设计遗传系统以获得所需的周期性蛋白质合成速率的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/150e/4011696/f046c85f425f/pone.0096039.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验