IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1351-1364. doi: 10.1109/TCBB.2017.2707420. Epub 2017 May 23.
The ribosomal density along different parts of the coding regions of the mRNA molecule affects various fundamental intracellular phenomena including: protein production rates, global ribosome allocation and organismal fitness, ribosomal drop off, co-translational protein folding, mRNA degradation, and more. Thus, regulating translation in order to obtain a desired ribosomal profile along the mRNA molecule is an important biological problem. We study this problem by using a dynamical model for mRNA translation, called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as an ordered chain of $n$ sites. The RFM includes $n$ state-variables describing the ribosomal density profile along the mRNA molecule, and the transition rates from each site to the next are controlled by $n+1$ positive constants. To study the problem of controlling the density profile, we consider some or all of the transition rates as time-varying controls. We consider the following problem: given an initial and a desired ribosomal density profile in the RFM, determine the time-varying values of the transition rates that steer the system to the desired density profile, if they exist. More specifically, we consider two control problems. In the first, all transition rates can be regulated separately, and the goal is to steer the ribosomal density profile and the protein production rate from a given initial value to a desired value. In the second problem, one or more transition rates are jointly regulated by a single scalar control, and the goal is to steer the production rate to a desired value within a certain set of feasible values. In the first case, we show that the system is controllable, i.e., the control is powerful enough to steer the system to any desired value in finite time, and provide simple closed-form expressions for constant positive control functions (or transition rates) that asymptotically steer the system to the desired value. In the second case, we show that the system is controllable, and provide a simple algorithm for determining the constant positive control value that asymptotically steers the system to the desired value. We discuss some of the biological implications of these results.
核糖体在 mRNA 分子编码区的不同部位的密度会影响多种基本的细胞内现象,包括:蛋白质的产生速率、核糖体的全局分配和生物体的适应性、核糖体脱落、共翻译蛋白质折叠、mRNA 降解等等。因此,调节翻译以在 mRNA 分子上获得所需的核糖体图谱是一个重要的生物学问题。我们使用称为核糖体流模型(RFM)的 mRNA 翻译动力学模型来研究这个问题。在 RFM 中,mRNA 分子被建模为一个有序的链,有 n 个位点。RFM 包含 n 个状态变量,描述核糖体沿 mRNA 分子的密度图谱,从一个位点到下一个位点的转移率由 n+1 个正常数控制。为了研究控制密度图谱的问题,我们将某些或所有的转移率视为时变控制。我们考虑以下问题:给定 RFM 中的初始和所需的核糖体密度图谱,确定是否存在时变转移率值,以引导系统达到所需的密度图谱。更具体地说,我们考虑了两个控制问题。在第一个问题中,可以单独调节所有的转移率,目标是将核糖体密度图谱和蛋白质产生率从给定的初始值引导到期望的值。在第二个问题中,一个或多个转移率由单个标量控制联合调节,目标是将产量在一定范围内引导到期望的值。在第一种情况下,我们证明了系统是可控的,即控制足以在有限时间内将系统引导到任何期望的值,并提供了简单的闭式表达式,用于渐近地将系统引导到期望的值的常数正控制函数(或转移率)。在第二种情况下,我们证明了系统是可控的,并提供了一种简单的算法,用于确定渐近地将系统引导到期望的值的常数正控制值。我们讨论了这些结果的一些生物学意义。