Farah J, Martinetti F, Sayah R, Lacoste V, Donadille L, Trompier F, Nauraye C, De Marzi L, Vabre I, Delacroix S, Hérault J, Clairand I
Institut de Radioprotection et de Sûreté Nucléaire - IRSN/PRP-HOM/SDE/LDRI; BP-17 F-92262 Fontenay-aux-Roses, France.
Phys Med Biol. 2014 Jun 7;59(11):2747-65. doi: 10.1088/0031-9155/59/11/2747. Epub 2014 May 6.
Monte Carlo calculations are increasingly used to assess stray radiation dose to healthy organs of proton therapy patients and estimate the risk of secondary cancer. Among the secondary particles, neutrons are of primary concern due to their high relative biological effectiveness. The validation of Monte Carlo simulations for out-of-field neutron doses remains however a major challenge to the community. Therefore this work focused on developing a global experimental approach to test the reliability of the MCNPX models of two proton therapy installations operating at 75 and 178 MeV for ocular and intracranial tumor treatments, respectively. The method consists of comparing Monte Carlo calculations against experimental measurements of: (a) neutron spectrometry inside the treatment room, (b) neutron ambient dose equivalent at several points within the treatment room, (c) secondary organ-specific neutron doses inside the Rando-Alderson anthropomorphic phantom. Results have proven that Monte Carlo models correctly reproduce secondary neutrons within the two proton therapy treatment rooms. Sensitive differences between experimental measurements and simulations were nonetheless observed especially with the highest beam energy. The study demonstrated the need for improved measurement tools, especially at the high neutron energy range, and more accurate physical models and cross sections within the Monte Carlo code to correctly assess secondary neutron doses in proton therapy applications.
蒙特卡罗计算越来越多地用于评估质子治疗患者健康器官的杂散辐射剂量,并估计继发癌症的风险。在次级粒子中,中子因其较高的相对生物效应而备受关注。然而,对野外中子剂量的蒙特卡罗模拟进行验证仍然是该领域的一项重大挑战。因此,这项工作的重点是开发一种全局实验方法,以测试分别用于眼部和颅内肿瘤治疗的、运行能量为75 MeV和178 MeV的两个质子治疗装置的MCNPX模型的可靠性。该方法包括将蒙特卡罗计算结果与以下实验测量结果进行比较:(a) 治疗室内的中子能谱,(b) 治疗室内多个点的中子周围剂量当量,(c) 兰多-奥尔德森人体模型内特定器官的次级中子剂量。结果证明,蒙特卡罗模型能够正确再现两个质子治疗室内的次级中子。不过,实验测量结果与模拟结果之间仍观察到了敏感差异,尤其是在最高束流能量下。该研究表明,需要改进测量工具,特别是在高中子能量范围内,并且需要在蒙特卡罗代码中使用更准确的物理模型和截面,以正确评估质子治疗应用中的次级中子剂量。