Domingo Carles, Lagares Juan Ignacio, Romero-Expósito Maite, Sánchez-Nieto Beatriz, Nieto-Camero Jaime J, Terrón Jose Antonio, Irazola Leticia, Dasu Alexandru, Sánchez-Doblado Francisco
Departament de Fisica, Universitat Autònoma de Barcelona, Bellaterra, Spain.
Unidad de Aplicaciones Médicas, Departamento de Tecnología, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
Front Oncol. 2022 May 25;12:882476. doi: 10.3389/fonc.2022.882476. eCollection 2022.
The aim of this work is to present a reproducible methodology for the evaluation of total equivalent doses in organs during proton therapy facilities. The methodology is based on measuring the dose equivalent in representative locations inside an anthropomorphic phantom where photon and neutron dosimeters were inserted. The Monte Carlo simulation was needed for obtaining neutron energy distribution inside the phantom. The methodology was implemented for a head irradiation case in the passive proton beam of iThemba Labs (South Africa). Thermoluminescent dosimeter (TLD)-600 and TLD-700 pairs were used as dosimeters inside the phantom and GEANT code for simulations. In addition, Bonner sphere spectrometry was performed inside the treatment room to obtain the neutron spectra, some relevant neutron dosimetric quantities per treatment Gy, and a percentual distribution of neutron fluence and ambient dose equivalent in four energy groups, at two locations. The neutron spectrum at one of those locations was also simulated so that a reasonable agreement between simulation and measurement allowed a validation of the simulation. Results showed that the total out-of-field dose equivalent inside the phantom ranged from 1.4 to 0.28 mSv/Gy, mainly due to the neutron contribution and with a small contribution from photons, 10% on average. The order of magnitude of the equivalent dose in organs was similar, displaying a slow reduction in values as the organ is farther from the target volume. These values were in agreement with those found by other authors in other passive beam facilities under similar irradiation and measurement conditions.
这项工作的目的是提出一种可重复的方法,用于评估质子治疗设施中器官内的总等效剂量。该方法基于测量在插入了光子和中子剂量计的人体模型内代表性位置处的剂量当量。需要进行蒙特卡罗模拟以获得模型内的中子能量分布。该方法在南非iThemba实验室的被动质子束头部照射案例中得到了应用。热释光剂量计(TLD)-600和TLD-700对被用作模型内的剂量计,并使用GEANT代码进行模拟。此外,在治疗室内进行了邦纳球谱测量,以获得中子能谱、每次治疗Gy的一些相关中子剂量学量,以及在两个位置四个能量组中的中子注量和环境剂量当量的百分比分布。还对其中一个位置的中子能谱进行了模拟,以便模拟与测量之间的合理一致性能够验证模拟结果。结果表明,模型内的总野外剂量当量范围为1.4至0.28 mSv/Gy,主要是由于中子的贡献,光子的贡献较小,平均为10%。器官内等效剂量的量级相似,随着器官离靶体积越远,其值呈缓慢下降趋势。这些值与其他作者在其他被动束设施中在类似照射和测量条件下发现的值一致。