Suppr超能文献

冠状动脉搭桥手术后七氟醚从呼吸气体和血液中消除的药代动力学。

Pharmacokinetics of sevoflurane elimination from respiratory gas and blood after coronary artery bypass grafting surgery.

作者信息

Lu Chih-Cherng, Tso-Chou Lin, Hsu Che-Hao, Tsai Chien-Song, Sheen Michael J, Hu Oliver Yao-Pu, Ho Shung-Tai

机构信息

Department of Anesthesiology, Taipei Veterans General Hospital/National Defense Medical Center, 4 F, Chung-Cheng Building, No. 201, Sec. 2, Shipai Rd, Beitou District, Taipei, Taiwan.

出版信息

J Anesth. 2014 Dec;28(6):873-9. doi: 10.1007/s00540-014-1841-7. Epub 2014 May 7.

Abstract

PURPOSE

Sevoflurane, with a relative low blood-gas partition coefficient, is an ideal anesthetic to achieve rapid offset and recovery from general anesthesia. This study will determine the profiles of four concentration-time curves to characterize the pharmacokinetics of sevoflurane elimination.

METHODS

Eight patients (aged 54-76 years) undergoing coronary arterial bypass grafting surgery were enrolled in this study. At the end of surgery, anesthetic gas and blood were sampled 20 min before and after stopping sevoflurane administration, with prior maintenance of a fixed 5% inspired sevoflurane (CIsev) in 6 L/min oxygen flow for 60 min before the cessation of sevoflurane administration for the subsequent 20 min elimination. An infrared analyzer was used to determine both CIsev and end-tidal sevoflurane (CEsev). The sevoflurane concentrations in the internal jugular-bulb (Jsev), arterial (Asev) and pulmonary arterial blood (PAsev) were analyzed by gas chromatography, and cardiac output was measured using an Opti-Q pulmonary artery catheter.

RESULTS

A bi-exponential decay function was the best fit for the CEsev,Jsev, Asev, and PAsev time curves. There were two distinct components, the initial 5-min fast or distribution phase and the subsequent 15-min slow or elimination phase. Before cessation of the sevoflurane supplement, the step-down concentration of sevoflurane was listed in the following order: CIsev > CEsev > Asev ≧ Jsev > PAsev. During the elimination phase, the fastest decay occurred in CEsev, followed by Jsev, Asev and PAsev. Therefore, a reverse step-down pattern was observed (PAsev > Asev ≧ Jsev > CEsev) after 20 min. The ratio of Asev to CEsev was 89% at baseline before stopping sevoflurane administration, but the ratio of Asev to CEsev increased to 128% at the twentieth min of the sevoflurane elimination phase.

CONCLUSIONS

During elimination, the initial washout of sevoflurane from the functional residual capacity of the lungs was reflected in the fast component of the CEsev, Jsev, Asev, and PAsev time curves. In contrast, the slow component was dominated by the tangible effects of the physiological membrane barriers, such as the alveoli-pulmonary capillary and blood-brain barriers.

摘要

目的

七氟醚具有相对较低的血气分配系数,是实现全身麻醉快速苏醒的理想麻醉剂。本研究将确定四条浓度-时间曲线的特征,以表征七氟醚消除的药代动力学。

方法

本研究纳入了8例接受冠状动脉搭桥手术的患者(年龄54 - 76岁)。手术结束时,在停止给予七氟醚之前和之后20分钟采集麻醉气体和血液样本,在停止给予七氟醚之前,先在6升/分钟的氧气流中维持5%的吸入七氟醚(CIsev)60分钟,随后进行20分钟的消除。使用红外分析仪测定CIsev和呼气末七氟醚(CEsev)。通过气相色谱法分析颈内静脉血(Jsev)、动脉血(Asev)和肺动脉血(PAsev)中的七氟醚浓度,并使用Opti-Q肺动脉导管测量心输出量。

结果

双指数衰减函数最适合CEsev、Jsev、Asev和PAsev的时间曲线。有两个明显的成分,最初的5分钟快速或分布相以及随后的15分钟缓慢或消除相。在停止补充七氟醚之前,七氟醚的递减浓度顺序如下:CIsev > CEsev > Asev ≧ Jsev > PAsev。在消除阶段,CEsev的衰减最快,其次是Jsev、Asev和PAsev。因此,20分钟后观察到相反的递减模式(PAsev > Asev ≧ Jsev > CEsev)。在停止给予七氟醚之前的基线时,Asev与CEsev的比值为89%,但在七氟醚消除阶段的第20分钟,Asev与CEsev的比值增加到128%。

结论

在消除过程中,七氟醚从肺功能残气量中的初始清除反映在CEsev、Jsev、Asev和PAsev时间曲线的快速成分中。相比之下,缓慢成分主要受生理膜屏障(如肺泡-肺毛细血管屏障和血脑屏障)的显著影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验