Suppr超能文献

脑干神经元在导致更高神经元死亡的相同缺血应激下存活:对持续性植物状态的洞察。

Brainstem neurons survive the identical ischemic stress that kills higher neurons: insight to the persistent vegetative state.

机构信息

Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada.

出版信息

PLoS One. 2014 May 6;9(5):e96585. doi: 10.1371/journal.pone.0096585. eCollection 2014.

Abstract

Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a 'persistent vegetative state' where the patient is awake but not aware. Approximately 30,000 U.S. patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD) causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared resistance to acute injury induced from simulated ischemia by 'higher' hippocampal and striatal neurons versus brainstem neurons in live slices from rat and mouse. Light transmittance (LT) imaging in response to 10 minutes of oxygen/glucose deprivation (OGD) revealed immediate and acutely damaging AD propagating through gray matter of neocortex, hippocampus, striatum, thalamus and cerebellar cortex. In adjacent brainstem nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from hippocampal and striatal neurons under OGD revealed sudden membrane potential loss that did not recover. In contrast brainstem neurons from locus ceruleus and mesencephalic nucleus as well as from sensory and motor nuclei only slowly depolarized and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling and dendritic beading of hippocampal neurons during OGD, while mesencephalic neurons in midbrain appeared uninjured. All of the above responses were mimicked by bath exposure to 100 µM ouabain which inhibits the Na+/K+ pump or to 1-10 nM palytoxin which converts the pump into an open cationic channel. Therefore during ischemia the Na+/K+ pump of higher neurons fails quickly and extensively compared to naturally resilient hypothalamic and brainstem neurons. The selective survival of lower brain regions that maintain vital functions will support the persistent vegetative state.

摘要

全球范围内,因心脏病发作、肺衰竭、近乎溺水或创伤性脑损伤导致的局部缺血通常会损伤大脑高级区域,但不会损伤脑干,导致患者处于“持续性植物状态”,即患者虽然清醒但毫无意识。大约 3 万名美国患者处于这种状态,但没有一项研究探讨过大脑下部在这些人中是如何受到优先保护的。在大脑高级区域,局部缺血会引发深刻的缺氧性去极化(AD),导致神经元功能障碍和血管收缩,这一过程在数分钟内即可完成。那么,脑干核团是否会产生破坏性更小的 AD,从而具有更强的抗损伤能力?在这里,我们比较了来自大鼠和小鼠活体切片的海马和纹状体神经元与脑干神经元对模拟缺血诱导的急性损伤的抗性。对 10 分钟氧/葡萄糖剥夺(OGD)的光透射(LT)成像显示,AD 立即传播穿过新皮质、海马体、纹状体、丘脑和小脑皮质的灰质,导致急性损伤。在相邻的脑干核团中,OGD 诱发的 AD 几乎不会造成组织损伤。在 OGD 下进行全细胞贴片记录显示,海马和纹状体神经元的膜电位突然丧失,且无法恢复。相比之下,蓝斑核和中脑核中的脑干神经元以及感觉和运动核中的神经元仅缓慢去极化,然后在 OGD 后复极化。双光子显微镜证实,在 OGD 期间,海马神经元会发生不可恢复的肿胀和树突珠形成,而中脑神经元似乎未受伤。上述所有反应都可以通过用 100μM 哇巴因或 1-10nM 海兔毒素进行浴液处理来模拟,前者抑制钠/钾泵,后者将泵转化为开放的阳离子通道。因此,在局部缺血期间,与天然具有抗损伤能力的下丘脑和脑干神经元相比,高级神经元的钠/钾泵会迅速且广泛地衰竭。维持重要功能的下部脑区的选择性存活将支持持续性植物状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1cc/4011844/4e8b29d57f50/pone.0096585.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验