Division of Biological Sciences, The University of Missouri, Columbia, USA.
BMC Biol. 2023 Mar 16;21(1):54. doi: 10.1186/s12915-023-01518-0.
Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia.
In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h.
Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.
神经回路功能对能量限制非常敏感。与哺乳动物非常相似,美洲牛蛙的大脑活动在缺氧时很快就会停止。然而,在越冬后苏醒时,这些回路可以仅利用无氧糖酵解作为燃料,在没有氧气的情况下持续工作约 30 倍,这是脊椎动物中独有的特性,因为考虑到网络活动的高成本,这种特性的能量消耗极高。在这里,我们评估了通常限制网络输出的神经元功能,并确定了经历能量可塑性以增加缺氧条件下稳健性的成分。
在对照动物中,缺氧剥夺了原生回路中的兴奋性突触驱动,这导致突触后放电减少,从而导致网络在数分钟内失效。对诱发和自发突触传递的评估表明,缺氧会损害突触前和突触后的突触通讯。然而,对照神经元在缺氧期间保持膜电位和放电能力,这表明这些过程不会限制网络活动。在越冬后,突触传递在缺氧条件下持续存在,从而维持运动功能至少 2 小时。
允许无氧代谢为突触提供燃料的改变对于将回路转化为无需氧气即可工作至关重要。来自许多脊椎动物物种的数据表明,由于该途径的 ATP 产率低,无氧糖酵解不能为活跃的突触提供燃料。因此,我们的结果表明了一种独特的策略,即突触从氧化代谢切换到仅无氧糖酵解代谢,以在长时间的能量限制期间维持回路功能。