Hargis Jacqueline C, Vankayala Sai Lakshmana, White Justin K, Woodcock H Lee
Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States.
J Chem Theory Comput. 2014 Feb 11;10(2):855-864. doi: 10.1021/ct400968v. Epub 2014 Jan 10.
Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π-π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties.
细菌对标准(即基于β-内酰胺)抗生素的耐药性已成为全球性的大流行问题。与此同时,尽管耐药性的重要性已得到普遍认可,但对其潜在原因的研究却大幅放缓。揭示关键细节的关键在于对非共价相互作用的表征,这些相互作用决定了结合和特异性(DD-肽酶,抗生素靶点,与β-内酰胺酶,在耐药性中起主要作用的进化衍生酶),并最终决定了整体的耐药性。在此,我们描述了一项详细的研究,该研究对这些潜在的分子间相互作用产生了新的化学见解。使用一系列计算技术研究了与R61肽酶复合的苄青霉素和一种新型β-内酰胺肽模拟物:分子动力学(MD)模拟、量子力学/分子力学(QM/MM)计算、电荷微扰分析、QM/MM轨道分析、生物信息学、柔性受体/柔性配体对接以及计算药物代谢动力学(ADME)预测。确定了几个关键的分子水平相互作用,这些相互作用不仅揭示了基本的耐药机制,还为观察到的特异性提供了解释。具体而言,阐明了一个扩展的π-π网络,表明抗菌耐药性的进化部分归因于稳定的芳香族相互作用。此外,还确定并表征了蛋白质与肽模拟底物之间的相互作用。特别值得关注的是Asp217与肽模拟物带正电荷的N端之间由水介导的盐桥,揭示了一种可能对β-内酰胺特异性有显著贡献的相互作用。最后,利用相互作用信息对当前的β-内酰胺化合物提出修饰建议,这些修饰应既能改善DD-肽酶中的结合和特异性,又能改善其物理化学性质。