IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):942-53. doi: 10.1109/TNNLS.2012.2193414.
In this paper, a new synchronization problem is addressed for an array of 2-D coupled dynamical networks. The class of systems under investigation is described by the 2-D nonlinear state space model which is oriented from the well-known Fornasini-Marchesini second model. For such a new 2-D complex network model, both the network dynamics and the couplings evolve in two independent directions. A new synchronization concept is put forward to account for the phenomenon that the propagations of all 2-D dynamical networks are synchronized in two directions with influence from the coupling strength. The purpose of the problem addressed is to first derive sufficient conditions ensuring the global synchronization and then extend the obtained results to more general cases where the system matrices contain either the norm-bounded or the polytopic parameter uncertainties. An energy-like quadratic function is developed, together with the intensive use of the Kronecker product, to establish the easy-to-verify conditions under which the addressed 2-D complex network model achieves global synchronization. Finally, a numerical example is given to illustrate the theoretical results and the effectiveness of the proposed synchronization scheme.
本文针对二维耦合动力网络的同步问题进行了研究。所研究的系统类由著名的福纳西尼-马切西尼第二模型所描述的二维非线性状态空间模型来描述。对于这样一个新的二维复杂网络模型,网络动力学和耦合在两个独立的方向上演变。提出了一个新的同步概念,以说明在两个方向上所有二维动力网络的传播都受到耦合强度影响的同步现象。所解决的问题旨在首先推导出确保全局同步的充分条件,然后将所得到的结果扩展到更一般的情况,其中系统矩阵包含范数有界或多胞形参数不确定性。开发了一个类似于能量的二次函数,并且密集地使用了克罗内克积,以建立易于验证的条件,根据这些条件,所提出的二维复杂网络模型实现了全局同步。最后,通过数值实例说明了理论结果和所提出的同步方案的有效性。