IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):971-83. doi: 10.1109/TNNLS.2012.2191419.
This paper proposes a neural network structure for spatio-temporal learning and recognition inspired by the long-term memory (LTM) model of the human cortex. Our structure is able to process real-valued and multidimensional sequences. This capability is attained by addressing three critical problems in sequential learning, namely the error tolerance, the significance of sequence elements and memory forgetting. We demonstrate the potential of the framework with a series of synthetic simulations and the Australian sign language (ASL) dataset. Results show that our LTM model is robust to different types of distortions. Second, our LTM model outperforms other sequential processing models in a classification task for the ASL dataset.
本文提出了一种基于人类大脑皮层长时记忆(LTM)模型的时空学习和识别的神经网络结构。我们的结构能够处理实值和多维序列。通过解决序列学习中的三个关键问题,即容错性、序列元素的重要性和记忆遗忘,实现了这一能力。我们使用一系列合成模拟和澳大利亚手语(ASL)数据集展示了该框架的潜力。结果表明,我们的 LTM 模型对不同类型的失真具有鲁棒性。其次,我们的 LTM 模型在 ASL 数据集的分类任务中优于其他序列处理模型。