Beqollari D, Romberg C F, Meza U, Papadopoulos S, Bannister R A
Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.
Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado; Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
Biophys J. 2014 May 6;106(9):1950-7. doi: 10.1016/j.bpj.2014.03.033.
Work in heterologous systems has revealed that members of the Rad, Rem, Rem2, Gem/Kir (RGK) family of small GTP-binding proteins profoundly inhibit L-type Ca(2+) channels via three mechanisms: 1), reduction of membrane expression; 2), immobilization of the voltage-sensors; and 3), reduction of Po without impaired voltage-sensor movement. However, the question of which mode is the critical one for inhibition of L-type channels in their native environments persists. To address this conundrum in skeletal muscle, we overexpressed Rad and Rem in flexor digitorum brevis (FDB) fibers via in vivo electroporation and examined the abilities of these two RGK isoforms to modulate the L-type Ca(2+) channel (CaV1.1). We found that Rad and Rem both potently inhibit L-type current in FDB fibers. However, intramembrane charge movement was only reduced in fibers transfected with Rad; charge movement for Rem-expressing fibers was virtually identical to charge movement observed in naïve fibers. This result indicated that Rem supports inhibition solely through a mechanism that allows for translocation of CaV1.1's voltage-sensors, whereas Rad utilizes at least one mode that limits voltage-sensor movement. Because Rad and Rem differ significantly only in their amino-termini, we constructed Rad-Rem chimeras to probe the structural basis for the distinct specificities of Rad- and Rem-mediated inhibition. Using this approach, a chimera composed of the amino-terminus of Rem and the core/carboxyl-terminus of Rad inhibited L-type current without reducing charge movement. Conversely, a chimera having the amino-terminus of Rad fused to the core/carboxyl-terminus of Rem inhibited L-type current with a concurrent reduction in charge movement. Thus, we have identified the amino-termini of Rad and Rem as the structural elements dictating the specific modes of inhibition of CaV1.1.
在异源系统中的研究表明,小GTP结合蛋白的Rad、Rem、Rem2、Gem/Kir(RGK)家族成员通过三种机制深刻抑制L型Ca(2+)通道:1)减少膜表达;2)固定电压传感器;3)降低Po而不影响电压传感器移动。然而,在其天然环境中抑制L型通道的关键模式问题仍然存在。为了解决骨骼肌中的这一难题,我们通过体内电穿孔在趾短屈肌(FDB)纤维中过表达Rad和Rem,并研究这两种RGK异构体调节L型Ca(2+)通道(CaV1.1)的能力。我们发现Rad和Rem都能有效抑制FDB纤维中的L型电流。然而,仅在转染Rad的纤维中膜内电荷移动减少;表达Rem的纤维中的电荷移动与未处理纤维中观察到的电荷移动几乎相同。这一结果表明,Rem仅通过一种允许CaV1.1电压传感器易位的机制来支持抑制作用,而Rad至少利用一种限制电压传感器移动的模式。由于Rad和Rem仅在其氨基末端有显著差异,我们构建了Rad-Rem嵌合体以探究Rad和Rem介导的抑制作用不同特异性的结构基础。使用这种方法,一种由Rem的氨基末端和Rad的核心/羧基末端组成的嵌合体抑制L型电流而不减少电荷移动。相反,一种将Rad的氨基末端与Rem的核心/羧基末端融合的嵌合体抑制L型电流,同时电荷移动减少。因此,我们已经确定Rad和Rem的氨基末端是决定CaV1.1抑制特定模式的结构元件。