Suppr超能文献

简单二项问题的感知器平衡。

Equilibria of perceptrons for simple contingency problems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2012 Aug;23(8):1340-4. doi: 10.1109/TNNLS.2012.2199766.

Abstract

The contingency between cues and outcomes is fundamentally important to theories of causal reasoning and to theories of associative learning. Researchers have computed the equilibria of Rescorla-Wagner models for a variety of contingency problems, and have used these equilibria to identify situations in which the Rescorla-Wagner model is consistent, or inconsistent, with normative models of contingency. Mathematical analyses that directly compare artificial neural networks to contingency theory have not been performed, because of the assumed equivalence between the Rescorla-Wagner learning rule and the delta rule training of artificial neural networks. However, recent results indicate that this equivalence is not as straightforward as typically assumed, suggesting a strong need for mathematical accounts of how networks deal with contingency problems. One such analysis is presented here, where it is proven that the structure of the equilibrium for a simple network trained on a basic contingency problem is quite different from the structure of the equilibrium for a Rescorla-Wagner model faced with the same problem. However, these structural differences lead to functionally equivalent behavior. The implications of this result for the relationships between associative learning, contingency theory, and connectionism are discussed.

摘要

线索与结果之间的偶然性对于因果推理理论和联想学习理论都至关重要。研究人员已经为各种偶然性问题计算了 Rescorla-Wagner 模型的平衡点,并使用这些平衡点来确定 Rescorla-Wagner 模型与偶然性的规范模型一致或不一致的情况。由于 Rescorla-Wagner 学习规则与人工神经网络的 delta 规则训练之间存在假设的等价关系,因此尚未对直接将人工神经网络与偶然性理论进行数学分析。然而,最近的结果表明,这种等价关系并不像通常假设的那样简单,这表明需要对网络如何处理偶然性问题进行数学解释。这里提出了一种这样的分析方法,证明了在基本偶然性问题上训练的简单网络的平衡点的结构与面对相同问题的 Rescorla-Wagner 模型的平衡点的结构有很大的不同。然而,这些结构差异导致了功能等效的行为。讨论了这一结果对联想学习、偶然性理论和连接主义之间关系的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验