Suppr超能文献

感知机中的概率匹配:条件依赖和线性不可分性的影响。

Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability.

作者信息

Dawson Michael R W, Gupta Maya

机构信息

Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.

出版信息

PLoS One. 2017 Feb 17;12(2):e0172431. doi: 10.1371/journal.pone.0172431. eCollection 2017.

Abstract

Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent's environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned.

摘要

当一个智能体的行为与该智能体所处环境中事件发生的可能性相匹配时,就会出现概率匹配。例如,当人工神经网络进行概率匹配时,其输出单元的活动等于在有刺激的情况下过去获得奖励的概率。我们之前的研究表明,简单的人工神经网络(感知器,由一组直接连接到单个输出单元的输入单元组成)在单独呈现不同线索时会学习进行概率匹配。本文通过表明感知器在同时呈现线索时能够进行概率匹配来扩展这一研究,其中每个线索表示不同的奖励可能性。在我们的第一个模拟中,我们同时呈现多达四个不同的线索;一个线索出现所表示的奖励可能性与其他线索所表示的奖励可能性无关。感知器通过将每个线索视为关于奖励可能性的独立信息源来学习匹配奖励概率。在第二个模拟中,我们通过使一些奖励概率取决于线索之间的相互作用来打破线索之间的独立性。我们通过基于四个可能线索中的两个线索的逻辑组合(与或异或)来确定奖励概率做到了这一点。我们还改变了与逻辑组合相关的奖励大小。我们发现,与线索之间相互作用的逻辑结构相比,后一种操作能更好地预测感知器的性能。这表明,当感知器学习进行概率匹配时,它们是通过假设奖励的每个信号都独立于任何其他信号来做到这一点的;感知器性能的最佳预测指标是这些输入信号独立性的定量度量,而不是正在学习的问题的逻辑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab27/5315326/549d943c411f/pone.0172431.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验