Suppr超能文献

基于增强型多实例回归的边界框中目标轮廓推断。

Augmented multiple instance regression for inferring object contours in bounding boxes.

出版信息

IEEE Trans Image Process. 2014 Apr;23(4):1722-36. doi: 10.1109/TIP.2014.2307436.

Abstract

In this paper, we address the problem of the high annotation cost of acquiring training data for semantic segmentation. Most modern approaches to semantic segmentation are based upon graphical models, such as the conditional random fields, and rely on sufficient training data in form of object contours. To reduce the manual effort on pixel-wise annotating contours, we consider the setting in which the training data set for semantic segmentation is a mixture of a few object contours and an abundant set of bounding boxes of objects. Our idea is to borrow the knowledge derived from the object contours to infer the unknown object contours enclosed by the bounding boxes. The inferred contours can then serve as training data for semantic segmentation. To this end, we generate multiple contour hypotheses for each bounding box with the assumption that at least one hypothesis is close to the ground truth. This paper proposes an approach, called augmented multiple instance regression (AMIR), that formulates the task of hypothesis selection as the problem of multiple instance regression (MIR), and augments information derived from the object contours to guide and regularize the training process of MIR. In this way, a bounding box is treated as a bag with its contour hypotheses as instances, and the positive instances refer to the hypotheses close to the ground truth. The proposed approach has been evaluated on the Pascal VOC segmentation task. The promising results demonstrate that AMIR can precisely infer the object contours in the bounding boxes, and hence provide effective alternatives to manually labeled contours for semantic segmentation.

摘要

在本文中,我们解决了获取语义分割训练数据的高标注成本问题。大多数现代语义分割方法都是基于图形模型的,例如条件随机场,并依赖于足够的对象轮廓形式的训练数据。为了减少对像素级标注轮廓的人工工作,我们考虑了这样一种设置,其中语义分割的训练数据集是少数几个对象轮廓和大量对象边界框的混合。我们的想法是借用从对象轮廓中获得的知识来推断由边界框包围的未知对象轮廓。推断出的轮廓可以作为语义分割的训练数据。为此,我们假设每个边界框都有多个轮廓假设,至少有一个假设接近真实情况。本文提出了一种称为增强多实例回归(AMIR)的方法,该方法将假设选择任务表述为多实例回归(MIR)问题,并增强了从对象轮廓中提取的信息,以指导和正则化 MIR 的训练过程。通过这种方式,一个边界框被视为一个带有其轮廓假设作为实例的袋子,正实例是指接近真实情况的假设。所提出的方法已经在 Pascal VOC 分割任务上进行了评估。有希望的结果表明,AMIR 可以精确地推断出边界框中的对象轮廓,因此为语义分割提供了有效的手动标记轮廓替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验