IEEE Trans Neural Netw Learn Syst. 2013 Apr;24(4):647-60. doi: 10.1109/TNNLS.2012.2228231.
Class imbalance learning tackles supervised learning problems where some classes have significantly more examples than others. Most of the existing research focused only on binary-class cases. In this paper, we study multiclass imbalance problems and propose a dynamic sampling method (DyS) for multilayer perceptrons (MLP). In DyS, for each epoch of the training process, every example is fed to the current MLP and then the probability of it being selected for training the MLP is estimated. DyS dynamically selects informative data to train the MLP. In order to evaluate DyS and understand its strength and weakness, comprehensive experimental studies have been carried out. Results on 20 multiclass imbalanced data sets show that DyS can outperform the compared methods, including pre-sample methods, active learning methods, cost-sensitive methods, and boosting-type methods.
类别不平衡学习处理监督学习问题,其中一些类别有明显更多的例子比其他的。大多数现有的研究只关注于二进制类的情况。在本文中,我们研究多类不平衡问题,并提出了一种动态抽样方法(DyS)为多层感知器(MLP)。在 DyS 中,对于训练过程中的每个时期,每个例子都被馈送到当前的 MLP,然后估计它被选择用于训练 MLP 的概率。DyS 动态选择信息丰富的数据来训练 MLP。为了评估 DyS 并理解它的优势和劣势,进行了全面的实验研究。在 20 个多类不平衡数据集上的结果表明,DyS 可以优于比较方法,包括预采样方法、主动学习方法、代价敏感方法和提升型方法。